rec.1 Bounded Minimization

It is often useful to define a function as the least number satisfying some property or relation \(P \). If \(P \) is decidable, we can compute this function simply by trying out all the possible numbers, 0, 1, 2, \ldots, until we find the least one satisfying \(P \). This kind of unbounded search takes us out of the realm of primitive recursive functions. However, if we’re only interested in the least number \textit{less than some independently given bound}, we stay primitive recursive. In other words, and a bit more generally, suppose we have a primitive recursive relation \(R(x, z) \). Consider the function that maps \(x \) and \(y \) to the least \(z < y \) such that \(R(x, z) \). It, too, can be computed, by testing whether \(R(x, 0), R(x, 1), \ldots, R(x, y - 1) \). But why is it primitive recursive?

Proposition rec.1. If \(R(\vec{x}, z) \) is primitive recursive, so is the function \(m_R(\vec{x}, y) \) which returns the least \(z < y \) such that \(R(\vec{x}, z) \) holds, if there is one, and \(y \) otherwise. We will write the function \(m_R \) as

\[
(\min z < y) R(\vec{x}, z),
\]

Proof. Note than there can be no \(z < 0 \) such that \(R(\vec{x}, z) \) since there is no \(z < 0 \) at all. So \(m_R(\vec{x}, 0) = 0 \).

In case the bound is of the form \(y + 1 \) we have three cases:

1. There is a \(z < y \) such that \(R(\vec{x}, z) \), in which case \(m_R(\vec{x}, y+1) = m_R(\vec{x}, y) \).
2. There is no such \(z < y \) but \(R(\vec{x}, y) \) holds, then \(m_R(\vec{x}, y + 1) = y \).
3. There is no \(z < y + 1 \) such that \(R(\vec{x}, z) \), then \(m_R(\vec{x}, y+1) = y + 1 \).

So we can define \(m_R(\vec{x}, 0) \) by primitive recursion as follows:

\[
m_R(\vec{x}, 0) = 0
\]

\[
m_R(\vec{x}, y + 1) = \begin{cases}
m_R(\vec{x}, y) & \text{if } m_R(\vec{x}, y) \neq y \\
y & \text{if } m_R(\vec{x}, y) = y \text{ and } R(\vec{x}, y) \\
y + 1 & \text{otherwise.}
\end{cases}
\]

Note that there is a \(z < y \) such that \(R(\vec{x}, z) \) iff \(m_R(\vec{x}, y) \neq y \).

Problem rec.1. Suppose \(R(\vec{x}, z) \) is primitive recursive. Define the function \(m'_R(\vec{x}, y) \) which returns the least \(z \) less than \(y \) such that \(R(\vec{x}, z) \) holds, if there is one, and 0 otherwise, by primitive recursion from \(\chi_R \).

Photo Credits

Bibliography