rec.1 Bounded Minimization

It is often useful to define a function as the least number satisfying some property or relation \(P \). If \(P \) is decidable, we can compute this function simply by trying out all the possible numbers, 0, 1, 2, \ldots, until we find the least one satisfying \(P \). This kind of unbounded search takes us out of the realm of primitive recursive functions. However, if we’re only interested in the least number \textit{less than some independently given bound}, we stay primitive recursive. In other words, and a bit more generally, suppose we have a primitive recursive relation \(R(x, z) \). Consider the function that maps \(y \) and \(z \) to the least \(x < y \) such that \(R(x, z) \). It, too, can be computed, by testing whether \(R(0, z) \), \(R(1, z) \), \ldots, \(R(y - 1, z) \). But why is it primitive recursive?

Proposition rec.1. If \(R(x, z) \) is primitive recursive, so is the function \(m_R(y, z) \) which returns the least \(x < y \) such that \(R(x, z) \) holds, if there is one, and 0 otherwise. We will write the function \(m_R \) as

\[
\min_{x < y} R(x, z),
\]

Proof. Note than there can be no \(x < 0 \) such that \(R(x, z) \) since there is no \(x < 0 \) at all. So \(m_R(x, 0) = 0 \).

In case the bound is \(y + 1 \) we have three cases: (a) There is an \(x < y \) such that \(R(x, z) \), in which case \(m_R(y + 1, z) = m_R(y, z) \). (b) There is no such \(x \) but \(R(y, z) \) holds, then \(m_R(y + 1, z) = y \). (c) There is no \(x < y + 1 \) such that \(R(x, z) \), then \(m_R(y + 1, z) = 0 \). So,

\[
m_R(0, z) = 0
\]

\[
m_R(y + 1, z) = \begin{cases} m_R(y, z) & \text{if } \exists x < y \text{ such that } R(x, z) \\ y & \text{otherwise, provided } R(y, z) \\ 0 & \text{otherwise.} \end{cases}
\]

The choice of “0 otherwise” is somewhat arbitrary. It is in fact even easier to recursively define the function \(m'_R \) which returns the least \(x < y \) such that \(R(x, z) \) holds, and \(y + 1 \) otherwise. When we use \(\min \), however, we will always know that the least \(x \) such that \(R(x, z) \) exists and is less than \(y \). Thus, in practice, we will not have to worry about the possibility that if \(\min x < y R(x, z) = 0 \) we do not know if that value indicates that \(R(0, z) \) or that for no \(x < y \), \(R(x, z) \). As with bounded quantification, \(\min x \leq y \ldots \) can be understood as \(\min x < y + 1 \ldots \).

Problem rec.1. Suppose \(R(x, z) \) is primitive recursive. Define the function \(m'_R(y, z) \) which returns the least \(x < y \) such that \(R(x, z) \) holds, if there is one, and \(y + 1 \) otherwise, by primitive recursion from \(\chi_R \).