lam.1 Representability by Lambda Terms

cmp:lam:rep:

How can the lambda calculus serve as a model of computation? At first, it is not even clear how to make sense of this statement. To talk about computability on the natural numbers, we need to find a suitable representation for such numbers. Here is one that works surprisingly well.

Definition lam.1. For each natural number n, define the numeral \overline{n} to be the lambda term $\lambda x. \lambda y. (x(x(x(x(x(x(y)))))), \text{ where there are } n \text{ } x\text{'s in all.}$

The terms \overline{n} are "iterators": on input f, \overline{n} returns the function mapping gto $f^{n}(y)$. Note that each numeral is normal. We can now say what it means for a lambda term to "compute" a function on the natural numbers.

Definition lam.2. Let $f(x_0,\ldots,x_{n-1})$ be an *n*-ary partial function from N to \mathbb{N} . We say a lambda term X represents f if for every sequence of natural numbers m_0, \ldots, m_{n-1} ,

$$X\overline{m_0m_1}\dots\overline{m_{n-1}} \triangleright \overline{f(m_0,m_1,\dots,m_{n-1})}$$

if $f(m_0, \ldots, m_{n-1})$ is defined, and $X\overline{m_0m_1}\ldots\overline{m_{n-1}}$ has no normal form otherwise.

thm:lambda-rep

Theorem lam.3. A function f is a partial computable function if and only if it is represented by a lambda term.

This theorem is somewhat striking. As a model of computation, the lambda explanation calculus is a rather simple calculus; the only operations are lambda abstraction and application! From these meager resources, however, it is possible to implement any computational procedure.

Photo Credits

Bibliography