Theorem lam.1. If a partial function f is represented by a lambda term, it is computable.

Proof. Suppose a function f, is represented by a lambda term X. Let us describe an informal procedure to compute f. On input m_0, \ldots, m_{n-1}, write down the term $Xm_0 \ldots m_{n-1}$. Build a tree, first writing down all the one-step reductions of the original term; below that, write all the one-step reductions of those (i.e., the two-step reductions of the original term); and keep going. If you ever reach a numeral, return that as the answer; otherwise, the function is undefined.

An appeal to Church’s thesis tells us that this function is computable. A better way to prove the theorem would be to give a recursive description of this search procedure. For example, one could define a sequence primitive recursive functions and relations, “IsASubterm,” “Substitute,” “ReducesToInOneStep,” “ReductionSequence,” “Numeral,” etc. The partial recursive procedure for computing $f(m_0, \ldots, m_{n-1})$ is then to search for a sequence of one-step reductions starting with $Xm_0 \ldots m_{n-1}$ and ending with a numeral, and return the number corresponding to that numeral. The details are long and tedious but otherwise routine.