Suppose you have a lambda term g, and you want another term k with the property that k is β-equivalent to gk. Define terms

$$\text{diag}(x) = xx$$

and

$$l(x) = g(\text{diag}(x))$$

using our notational conventions; in other words, l is the term $\lambda x. g(xx)$. Let k be the term ll. Then we have

$$k = (\lambda x. g(xx))(\lambda x. g(xx))$$

$$g((\lambda x. g(xx))(\lambda x. g(xx)))$$

$$= gk.$$

If one takes

$$Y = \lambda g. ((\lambda x. g(xx))(\lambda x. g(xx)))$$

then Yg and $g(Yg)$ reduce to a common term; so $Yg \equiv \beta g(Yg)$. This is known as “Curry’s combinator.” If instead one takes

$$Y = (\lambda xg. g(xxg))(\lambda xg. g(xxg))$$

then in fact Yg reduces to $g(Yg)$, which is a stronger statement. This latter version of Y is known as “Turing’s combinator.”

Photo Credits

Bibliography