Fixed-Point Combinators

Suppose you have a lambda term \(g \), and you want another term \(k \) with the property that \(k \) is \(\beta \)-equivalent to \(gk \). Define terms

\[
\text{diag}(x) = xx
\]

and

\[
l(x) = g(\text{diag}(x))
\]

using our notational conventions; in other words, \(l \) is the term \(\lambda x. g(xx) \). Let \(k \) be the term \(ll \). Then we have

\[
k = (\lambda x. g(xx))(\lambda x. g(xx))
\]

\[
\triangleright g((\lambda x. g(xx))(\lambda x. g(xx)))
\]

\[
= gk.
\]

If one takes

\[
Y = \lambda g. ((\lambda x. g(xx))(\lambda x. g(xx)))
\]

then \(Yg \) and \(g(Yg) \) reduce to a common term; so \(Yg \equiv_{\beta} g(Yg) \). This is known as “Curry’s combinator.” If instead one takes

\[
Y = (\lambda xg. g(xxg))(\lambda xg. g(xxg))
\]

then in fact \(Yg \) reduces to \(g(Yg) \), which is a stronger statement. This latter version of \(Y \) is known as “Turing’s combinator.”

Photo Credits

Bibliography