Lemma 1. The lambda representable functions are closed under composition.

Proof. Suppose f is defined by composition from h, g_0, \ldots, g_{k-1}. Assuming h, g_0, \ldots, g_{k-1} are represented by $\bar{h}, \bar{g}_0, \ldots, \bar{g}_{k-1}$, respectively, we need to find a term \bar{f} representing f. But we can simply define \bar{f} by

$$\bar{f}(x_0, \ldots, x_{l-1}) = \bar{h}(\bar{g}_0(x_0, \ldots, x_{l-1}), \ldots, \bar{g}_{k-1}(x_0, \ldots, x_{l-1})).$$

In other words, the language of the lambda calculus is well suited to represent composition. □

Photo Credits

Bibliography