The Basic Primitive Recursive Functions are Lambda Representable

Lemma lam.1. The functions 0, S, and \(P^n \) are lambda representable.

Proof. Zero, \(\mathbb{0} \), is just \(\lambda x. \lambda y. y \).

The successor function \(S \), is defined by \(S(u) = \lambda x. \lambda y. x(uxy) \). You should think about why this works; for each numeral \(n \), thought of as an iterator, and each function \(f \), \(S(n, f) \) is a function that, on input \(y \), applies \(f \) \(n \) times starting with \(y \), and then applies it once more.

There is nothing to say about projections: \(P^i(x_0, \ldots, x_{n-1}) = x_i \). In other words, by our conventions, \(P^i \) is the lambda term \(\lambda x_0. \ldots \lambda x_{n-1}. x_i \). \qed

Photo Credits

Bibliography