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This part is based on Jeremy Avigad’s notes on computability theory.
Only the chapter on recursive functions contains exercises yet, and every-
thing could stand to be expanded with motivation, examples, details, and
exercises.
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Chapter 1

Recursive Functions

These are Jeremy Avigad’s notes on recursive functions, revised and
expanded by Richard Zach. This chapter does contain some exercises,
and can be included independently to provide the basis for a discussion of
arithmetization of syntax.

1.1 Introduction

cmp:rec:int:
sec

In order to develop a mathematical theory of computability, one has to first
of all develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at the
beginning of the development of theories of computability, the paradigmatic
example of computation was numerical computation. Mathematicians were
always interested in number-theoretic functions, i.e., functions f : Nn → N that
can be computed. So it is not surprising that at the beginning of the theory
of computability, it was such functions that were studied. The most familiar
examples of computable numerical functions, such as addition, multiplication,
exponentiation (of natural numbers) share an interesting feature: they can be
defined recursively. It is thus quite natural to attempt a general definition of
computable function on the basis of recursive definitions. Among the many
possible ways to define number-theoretic functions recursively, one particulalry
simple pattern of definition here becomes central: so-called primitive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is
computable iff we can compute whether or not a tuple 〈n1, . . . , nk〉 is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of
computable functions. Thus we can define primitive recursive relations as well,
e.g., the relation “n evenly divides m” is a primitive recursive relation.
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Primitive recursive functions—those that can be defined using just primitive
recursion—are not, however, the only computable number-theoretic functions.
Many generalizations of primitive recursion have been considered, but the most
powerful and widely-accepted additional way of computing functions is by un-
bounded search. This leads to the definition of partial recursive functions, and
a related definition to general recursive functions. General recursive functions
are computable and total, and the definition characterizes exactly the partial
recursive functions that happen to be total. Recursive functions can simulate
every other model of computation (Turing machines, lambda calculus, etc.)
and so represent one of the many accepted models of computation.

1.2 Primitive Recursion

cmp:rec:pre:
sec

A characteristic of the natural numbers is that every natural number can
be reached from 0 by applying the successor operation “+1” finitely many
times—any natural number is either 0 or the successor of . . . the successor of 0.
One way to specify a function f : N → N that makes use of this fact is this:
(a) specify what the value of f is for argument 0, and (b) also specify how to,
given the value of f(x), compute the value of f(x+ 1). For (a) tells us directly
what f(0) is, so f is defined for 0. Now, using the instruction given by (b) for
x = 0, we can compute f(1) = f(0 + 1) from f(0). Using the same instructions
for x = 1, we compute f(2) = f(1 + 1) from f(1), and so on. For every natural
number x, we’ll eventually reach the step where we define f(x) from f(x+ 1),
and so f(x) is defined for all x ∈ N.

For instance, suppose we specify h : N→ N by the following two equations:

h(0) = 1

h(x+ 1) = 2 · h(x).

If we already know how to multiply, then these equations give us the informa-
tion required for (a) and (b) above. Successively the second equation, we get
that

h(1) = 2 · h(0) = 2,

h(2) = 2 · h(1) = 2 · 2,
h(3) = 2 · h(2) = 2 · 2 · 2,

...

We see that the function h we have specified is h(x) = 2x.

The characteristic feature of the natural numbers guarantees that there is
only one function d that meets these two criteria. A pair of equations like these
is called a definition by primitive recursion of the function d. It is so-called
because we define f “recursively,” i.e., the definition, secifically the second
equation, involves f itself on the right-hand-side. It is “primitive” because in
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defining f(x + 1) we only use the value f(x), i.e., the immediately preceding
value. This is the simplest way of defining a function on N recursively.

We can define even more fundamental functions like addition and multipli-
cation by primitive recursion. In these cases, however, the functions in question
are 2-place. We fix one of the argument places, and use the other for the recur-
sion. E.g, to define add(x, y) we can fix x and define the value first for y = 0
and then for y+ 1 in terms of y. Since x is fixed, it will appear on the left and
on the right side of the defining equations.

add(x, 0) = x

add(x, y + 1) = add(x, y) + 1

These equations specify the value of add for all x and y. To find add(2, 3),
for instance, we apply the defining equations for x = 2, using the first to find
add(2, 0) = 2, then using the second to successively find add(2, 1) = 2 + 1 = 3,
add(2, 2) = 3 + 1 = 4, add(2, 3) = 4 + 1 = 5.

In the definition of add we used + on the right-hand-side of the second
equation, but only to add 1. In other words, we used the successor function
succ(z) = z+1 and applied it to the previous value add(x, y) to define add(x, y+
1). So we can think of the recursive definition as given in terms of a single
function which we apply to the previous value. However, it doesn’t hurt—
and sometimes is necessary—to allow the function to depend not just on the
previous value but also on x and y. Consider:

mult(x, 0) = 0

mult(x, y + 1) = add(mult(x, y), x).

This is a primitive recursive definition of a function mult by applying the func-
tion add to both the preceding value mult(x, y) and the first argument x. It
also defines the function mult(x, y) for all arguments x and y. For instance,
mult(2, 3) is determined by successively computing mult(2, 0), mult(2, 1), mult(2, 2),
and mult(2, 3):

mult(2, 0) = 0

mult(2, 1) = mult(2, 0 + 1) = add(mult(2, 0), 2) = add(0, 2) = 2

mult(2, 2) = mult(2, 1 + 1) = add(mult(2, 1), 2) = add(2, 2) = 4

mult(2, 3) = mult(2, 2 + 1) = add(mult(2, 2), 2) = add(4, 2) = 6.

The general pattern then is this: to give a primitive recursive definition
of a function h(x0, . . . , xk, y), we provide two equations. The first defines the
value of h(x0, . . . , xk, 0) without reference to f . The second defines the value of
h(x0, . . . , xk, y+1) in terms of h(x0, . . . , xk, y), the other arguments x0, . . . , xk,
and y. Only the immediately preceding value of h may be used in that second
equation. If we think of the operations given by the right-hand-sides of these
two equations as themselves being functions f and g, then the pattern to define
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a new function h by primitive recursion is this:

h(x0, . . . , xk, 0) = f(x0, . . . , xk)

h(x0, . . . , xk, y + 1) = g(x0, . . . , xk, y, h(x0, . . . , xk, y)).

In the case of add, we have k = 0 and f(x0) = x0 (the identity function), and
g(x0, y, z) = z + 1 (the 3-place function that returns the successor of its third
argument):

add(x0, 0) = f(x0) = x0

add(x0, y + 1) = g(x0, y, add(x0, y)) = succ(add(x0, y))

In the case of mult, we have f(x0) = 0 (the constant function always return-
ing 0) and g(x0, y, z) = add(z, x0) (the 3-place function that returns the sum
of its first and last argument):

mult(x0, 0) = f(x0) = 0

mult(x0, y + 1) = g(x0, y,mult(x0, y)) = add(mult(x0, y), x0).

1.3 Composition

cmp:rec:com:
sec

If f and g are two one-place functions of natural numbers, we can compose
them: h(x) = g(f(x). The new function h(x) is then defined by composition
from the functions f and g. We’d like to generalize this to functions of more
than one argument.

Here’s one way of doing this: suppose f is a k-place function, and g0, . . . ,
gk−1 are k functions which are all n-place. Then we can define a new n-place
function h as follows:

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1)).

If f and all gi are computable, so is h: To compute h(x0, . . . , xn−1), first
compute the values yi = gi(x0, . . . , xn−1) for each i = 0, . . . , k − 1. Then feed
these values into f to compute h(x0, . . . , xk−1) = f(y0, . . . , yk−1).

This may seem like an overly restrictive characterization of what happens
when we compute a new function using some existing ones. For one thing,
sometimes we do not use all the arguments of a function, as when we defined
g(x, y, z) = succ(z) for use in the primitive recursive definition of add. Suppose
we are allowed use of the following functions:

Pni (x0, . . . , xn−1) = xi.

The functions P ki are called projection functions: Pni is an n-place function.
Then g can be defined as

g(x, y, z) = succ(P 3
2 )
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Here the role of f is played by the 1-place function succ, so k = 1. And we
have one 3-place function P 3

2 which plays the role of g0. The result is a 3-place
function that returns the successor of the third argument.

The projection functions also allow us to define new functions by reordering
or identifying arguments. For instance, the function h(x) = add(x, x) can be
defined as

h(x0) = add(P 1
0 (x0), P 1

0 (x0))

Here k = 2, n = 1, the role of f(y0, y1) is played by add, and the roles of g0(x0)
and g1(x0) are both played by P 1

0 (x0), the one-place projection function (aka
the identity function).

If f(y0, y1) is a function we already have, we can define the function h(x0, x1) =
f(x1, x0) by

h(x0, x1) = f(P 2
1 (x0, x1), P 2

0 (x0, x1)).

Here k = 2, n = 2, and the roles of g0 and g1 are played by P 2
1 and P 2

0 ,
respectively.

You may also worry that g0, . . . , gk−1 are all required to have the same
arity n. (Remember that the arity of a function is the number of arguments;
an n-place function has arity n.) But adding the projection functions provides
the desired flexibility. For example, suppose f and g are 3-place functions and
h is the 2-place function defined by

h(x, y) = f(x, g(x, x, y), y).

The definition of h can be rewritten with the projection functions, as

h(x, y) = f(P 2
0 (x, y), g(P 2

0 (x, y), P 2
0 (x, y), P 2

1 (x, y)), P 2
1 (x, y)).

Then h is the composition of f with P 2
0 , l, and P 2

1 , where

l(x, y) = g(P 2
0 (x, y), P 2

0 (x, y), P 2
1 (x, y)),

i.e., l is the composition of g with P 2
0 , P 2

0 , and P 2
1 .

1.4 Primitive Recursion Functions

cmp:rec:prf:
sec

Let us record again how we can define new functions from existing ones
using primitive recursion and composition.

Definition 1.1.cmp:rec:prf:

defn:primitive-recursion

Suppose f is a k-place function (k ≥ 1) and g is a (k + 2)-
place function. The function defined by primitive recursion from f and g is
the (k + 1)-place function h defined by the equations

h(x0, . . . , xk−1, y) = f(x0, . . . , xk−1)

h(x0, . . . , xk−1, y + 1) = g(x0, . . . , xk−1, y, h(x0, . . . , xk−1, y))

computability rev: ee4902c (2018-12-01) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Definition 1.2. cmp:rec:prf:

defn:composition

Suppose f is a k-place function, and g0, . . . , gk−1 are k
functions which are all n-place. The function defined by composition from f
and g0, . . . , gk−1 is the n-place function h defined by

h(x0, . . . , xn−1) = f(g0(x0, . . . , xn−1), . . . , gk−1(x0, . . . , xn−1)).

In addition to succ and the projection functions

Pni (x0, . . . , xn−1) = xi,

for each natural number n and i < n, we will include among the primitive
recursive functions the function zero(x) = 0.

Definition 1.3. The set of primitive recursive functions is the set of functions
from Nn to N, defined inductively by the following clauses:

1. zero is primitive recursive.

2. succ is primitive recursive.

3. Each projection function Pni is primitive recursive.

4. If f is a k-place primitive recursive function and g0, . . . , gk−1 are n-place
primitive recursive functions, then the composition of f with g0, . . . , gk−1
is primitive recursive.

5. If f is a k-place primitive recursive function and g is a k+2-place primitive
recursive function, then the function defined by primitive recursion from
f and g is primitive recursive.

explanation Put more concisely, the set of primitive recursive functions is the smallest
set containing zero, succ, and the projection functions Pnj , and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let S0 denote the set of
starting functions: zero, succ, and the projections. Once Si has been defined,
let Si+1 be the set of all functions you get by applying a single instance of
composition or primitive recursion to functions in Si. Then

S =
⋃
i∈N

Si

is the set of all primitive recursive functions

Let us verify that add is a primitive recursive function.

Proposition 1.4. The addition function add(x, y) = x+ y is primitive recur-
sive.
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Proof. We already have a primitive recursive definition of add in terms of two
functions f and g which matches the format of Definition 1.1:

add(x0, 0) = f(x0) = x0

add(x0, y + 1) = g(x0, y, add(x0, y)) = succ(add(x0, y))

So add is primitive recursive provided f and g are as well. f(x0) = x0 = P 1
0 (x0),

and the projection functions count as primitive recursive, so f is primitive
recursive. The function g is the three-place function g(x0, y, z) defined by

g(x0, y, z) = succ(z).

This does not yet tell us that g is primitive recursive, since g and succ are not
quite the same function: succ is one-place, and g has to be three-place. But
we can define g “officially” by composition as

g(x0, y, z) = succ(P 3
2 (x0, y, z))

Since succ and P 3
2 count as primitive recursive functions, g does as well, since

it can be defined by composition from primitive recursive functions.

Proposition 1.5.cmp:rec:prf:

prop:mult-pr

The multiplication function mult(x, y) = x · y is primitive
recursive.

Proof. Exercise.

Problem 1.1. Prove Proposition 1.5 by showing that the primitive recursive
definition of mult is can be put into the form required by Definition 1.1 and
showing that the corresponding functions f and g are primitive recursive.

Example 1.6. Here’s our very first example of a primitive recursive definition:

h(0) = 1

h(y + 1) = 2 · h(y).

This function cannot fit into the form required by Definition 1.1, since k = 0.
The definition also involves the constants 1 and 2. To get around the first
problem, let’s introduce a dummy argument and define the function h′:

h′(x0, 0) = f(x0) = 1

h′(x0, y + 1) = g(x0, y, h
′(x0, y)) = 2 · h′(x0, y).

The function f(x0) = 1 can be defined from succ and zero by composition:
f(x0) = succ(zero(x0)). The function g can be defined by composition from
g′(z) = 2 · z and projections:

g(x0, y, z) = g′(P 3
2 (x0, y, z))
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and g′ in turn can be defined by composition as

g′(z) = mult(g′′(z), P 1
0 (z))

and

g′′(z) = succ(f(z)),

where f is as above: f(z) = succ(zero(z)). Now that we have h′ we can use
composition again to let h(y) = h′(P 1

0 (y), P 1
0 (y)). This shows that h can be

defined from the basic functions using a sequence of compositions and primitive
recursions, so h is primitive recursive.

1.5 Primitive Recursion Notations

cmp:rec:not:
sec

One advantage to having the precise inductive description of the primitive
recursive functions is that we can be systematic in describing them. For exam-
ple, we can assign a “notation” to each such function, as follows. Use symbols
zero, succ, and Pni for zero, successor, and the projections. Now suppose f
is defined by composition from a k-place function h and n-place functions g0,
. . . , gk−1, and we have assigned notations H, G0, . . . , Gk−1 to the latter func-
tions. Then, using a new symbol Compk,n, we can denote the function f by
Compk,n[H,G0, . . . , Gk−1]. For the functions defined by primitive recursion,
we can use analogous notations of the form Reck[G,H], where k+1 is the arity
of the function being defined. With this setup, we can denote the addition
function by

Rec2[P 1
0 ,Comp1,3[succ, P 3

2 ]].

Having these notations sometimes proves useful.

Problem 1.2. Give the complete primitive recursive notation for mult.

1.6 Primitive Recursive Functions are Computable

cmp:rec:cmp:
sec

Suppose a function h is defined by primitive recursion

h(~x, 0) = f(~x)

h(~x, y) = g(~x, y, h(~x, y))

and suppose the functions f and g are computable. (We use ~x to abbreviate x0,
. . . , xk−1.) Then h(~x, 0) can obviously be computed, since it is just f(~x) which
we assume is computable. h(~x, 1) can then also be computed, since 1 = 0 + 1
and so h(~x, 1) is just

h(~x, 1) = g(~x, 0, h(~x, 0)) = g(~x, 0, f(~x)).
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We can go on in this way and compute

h(~x, 2) = g(~x, 1, h(~x, 1)) = g(~x, 1, g(~x, 0, f(~x)))

h(~x, 3) = g(~x, 2, h(~x, 2)) = g(~x, 2, g(~x, 1, g(~x, 0, f(~x))))

h(~x, 4) = g(~x, 3, h(~x, 3)) = g(~x, 3, g(~x, 2, g(~x, 1, g(~x, 0, f(~x)))))

...

Thus, to compute h(~x, y) in general, successively compute h(~x, 0), h(~x, 1), . . . ,
until we reach h(~x, y).

Thus, a primitive recursive definition yields a new computable function if
the functions f and g are computable. Composition of functions also results in
a computable function if the functions f and gi are computable.

Since the basic functions zero, succ, and Pni are computable, and com-
position and primitive recursion yield computable functions from computable
functions, this means that every primitive recursive function is computable.

1.7 Examples of Primitive Recursive Functions

cmp:rec:exa:
sec

We already have some examples of primitive recursive functions: the addi-
tion and multiplication functions add and mult. The identity function id(x) = x
is primitive recursive, since it is just P 1

0 . The constant functions constn(x) = n
are primitive recursive since they can be defined from zero and succ by suc-
cessive composition. This is useful when we want to use constants in primi-
tive recursive definitions, e.g., if we want to define the function f(x) = 2 · x
can obtain it by composition from constn(x) and multiplication as f(x) =
mult(const2(x), P 1

0 (x)). We’ll make use of this trick from now on.

Proposition 1.7. The exponentiation function exp(x, y) = xy is primitive
recursive.

Proof. We can define exp primitive recursively as

exp(x, 0) = 1

exp(x, y + 1) = mult(x, exp(x, y)).

Strictly speaking, this is not a recursive definition from primitive recursive
functions. Officially, though, we have:

exp(x, 0) = f(x)

exp(x, y + 1) = g(x, y, exp(x, y)).

where

f(x) = succ(zero(x)) = 1

g(x, y, z) = mult(P 3
0 (x, y, z), P 3

2 (x, y, z) = x · z
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and so f and g are defined from primitive recursive functions by composition.

Proposition 1.8. The predecessor function pred(y) defined by

pred(y) =

{
0 if y = 0

y − 1 otherwise

is primitive recursive.

Proof. Note that

pred(0) = 0

pred(y + 1) = y

This is almost a primitive recursive definition. It does not, strictly speaking, fit
into the pattern of definition by primitive recursion, since that pattern requires
at least one extra argument x. It is also odd in that it does not actually use
pred(y) in the definition of pred(y + 1). But we can first define pred′(x, y) by

pred′(x, 0) = zero(x) = 0

pred′(x, y + 1) = P 3
1 (x, y,pred′(x, y)) = y

and then define pred from it by composition, e.g., as pred(x) = pred′(zero(x), P 1
0 (x)).

Proposition 1.9. The factorial function fac(x) = x! = 1·2·3·· · ··x is primitive
recursive.

Proof. The obvious primitive recursive definition is

fac(0) = 1

fac(y + 1) = !y · (y + 1)

Officially, we have to first define a two-place function h

h(x, 0) = const1(x)

h(x, y) = g(x, y, h(x, y))

where g(x, y, z) = mult(P 3
2 (x, y, z), succ(P 3

1 (x, y, z) and then let

fac(y) = h(P 1
0 (y), P 1

0 (y))

From now on we’ll be a bit more lessez-faire and not give the official definitions
by composition and primitive recursion.
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Proposition 1.10. Truncated subtraction, x −̇ y, defined by

x −̇ y =

{
0 if x > y

x− y otherwise

is primitive recursive.

Proof. We have

x −̇ 0 = x

x −̇ (y + 1) = pred(x −̇ y)

Proposition 1.11. The distance between x and y, |x− y|, is primitive recur-
sive.

Proof. We have |x− y| = (x −̇ y) + (y −̇ x), so the distance can be defined by
composition from + and −̇, which are primitive recursive.

Proposition 1.12. The maximum of x and y, max(x, y), is primitive recur-
sive.

Proof. We can define max(x, y) by composition from + and −̇ by

max(x, y) = x+ (y −̇ x).

If x is the maximum, i.e., x ≥ y, then y −̇ x = 0, so x+ (y −̇ x) = x+ 0 = x. If
y is the maximum, then y −̇x = y−x, and so x+(y −̇x) = x+(y−x) = y.

Proposition 1.13.cmp:rec:exa:

prop:min-pr

The minimum of x and y, min(x, y), is primitive recur-
sive.

Proof. Prove Proposition 1.13.

Problem 1.3. Show that

f(x, y) = 2(2
. .

.
2x

)

}
y 2’s

is primitive recursive.

Problem 1.4. Show that integer division d(x, y) = bx/yc (i.e., division, where
you disregard everything after the decimal point) is primitive recursive. When
y = 0, we stipulate d(x, y) = 0. Give an explicit definition of d using primitive
recursion and composition.

Proposition 1.14. The set of primitive recursive functions is closed under the
following two operations:
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1. Finite sums: if f(~x, z) is primitive recursive, then so is the function

g(~x, y) =

y∑
z=0

f(~x, z).

2. Finite products: if f(~x, z) is primitive recursive, then so is the function

h(~x, y) =

y∏
z=0

f(~x, z).

Proof. For example, finite sums are defined recursively by the equations

g(~x, 0) = f(~x, 0)

g(~x, y + 1) = g(~x, y) + f(~x, y + 1).

1.8 Primitive Recursive Relations

cmp:rec:prr:
sec

Definition 1.15. A relation R(~x) is said to be primitive recursive if its char-
acteristic function,

χR(~x) =

{
1 if R(~x)
0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(~x),
one is referring to a relation of the form χR(~x) = 1, where χR is a primitive
recursive function which, on any input, returns either 1 or 0. For example, the
relation IsZero(x), which holds if and only if x = 0, corresponds to the function
χIsZero, defined using primitive recursion by

χIsZero(0) = 1, χIsZero(x+ 1) = 0.

It should be clear that one can compose relations with other primitive
recursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by IsZero(|x− y|)

2. The less-than relation, x ≤ y, defined by IsZero(x −̇ y)

Proposition 1.16. The set of primitive recursive relations is closed under
boolean operations, that is, if P (~x) and Q(~x) are primitive, so are

1. ¬R(~x)

2. P (~x) ∧Q(~x)
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3. P (~x) ∨Q(~x)

4. P (~x)→Q(~x)

Proof. Suppose P (~x) and Q(~x) are primitive recursive, i.e., their characteristic
functions χP and χQ are. We have to show that the characteristic functions of
¬R(~x), etc., are also primitive recursive.

χ¬P (~x) =

{
0 if χP (~x) = 1

1 otherwise

We can define χ¬P (~x) as 1 −̇ χP (~x).

χP∧Q(~x) =

{
1 if χP (~x) = χQ(~x) = 1

0 otherwise

We can define χP∧Q(~x) as χP (~x) · χQ(~x) or as min(χP (~x), χQ(~x)).
Similarly, χP∨Q(~x) = max(χP (~x), χQ(~x)) and χP∨Q(~x) = max(1−̇χP (~x), χQ(~x)).

Proposition 1.17. The set of primitive recursive relations is closed under
bounded quantification, i.e., if R(~x, z) is a primitive recursive relation, then so
are the relations (∀z < y) R(~x, z) and (∃z < y) R(~x, z).

((∀z < y) R(~x, z) holds of ~x and y if and only if R(~x, z) holds for every z
less than y, and similarly for (∃z < y) R(~x, z).)

Proof. By convention, we take (∀z < 0) R(~x, z) to be true (for the trivial
reason that there are no z less than 0) and (∃z < 0) R(~x, z) to be false. A
universal quantifier functions just like a finite product or iterated minimum,
i.e., if P (~x, y)⇔ (∀z < y) R(~x, z) then χP (~x, y) can be defined by

χP (~x, 0) = 1

χP (~x, y + 1) = min(χP (~x, y), χR(~x, y + 1))).

Bounded existential quantification can similarly be defined using max. Al-
ternatively, it can be defined from bounded universal quantification, using
the equivalence (∃z < y) R(~x, z)↔ ¬(∀z < y) ¬R(~x, z). Note that, for ex-
ample, a bounded quantifier of the form (∃x ≤ y) . . . x . . . is equivalent to
(∃x < y + 1) . . . x . . . .

Another useful primitive recursive function is the conditional function,
cond(x, y, z), defined by

cond(x, y, z) =

{
y if x = 0

z otherwise.

This is defined recursively by

cond(0, y, z) = y, cond(x+ 1, y, z) = z.
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One can use this to justify definitions of primitive recursive functions by cases
from primitive recursive relations:

Proposition 1.18. If g0(~x), . . . , gm(~x) are functions, and R1(~x), . . . , Rm−1(~x)
are primitive recursive relations, then the function f defined by

f(~x) =



g0(~x) if R0(~x)

g1(~x) if R1(~x) and not R0(~x)
...

gm−1(~x) if Rm−1(~x) and none of the previous hold

gm(~x) otherwise

is also primitive recursive.

Proof. When m = 1, this is just the function defined by

f(~x) = cond(χ¬R0
(~x), g0(~x), g1(~x)).

For m greater than 1, one can just compose definitions of this form.

1.9 Bounded Minimization

cmp:rec:bmi:
sec

explanation It is often useful to define a function as the least number satisfying some
property or relation P . If P is decidable, we can compute this function simply
by trying out all the possible numbers, 0, 1, 2, . . . , until we find the least
one satisfying P . This kind of unbounded search takes us out of the realm
of primitive recursive functions. However, if we’re only interested in the least
number less than some independently given bound, we stay primitive recursive.
In other words, and a bit more generally, suppose we have a primitive recursive
relation R(x, z). Consider the function that maps x and y to the least z < y
such that R(x, z). It, too, can be computed, by testing whether R(x, 0), R(x, 1),
. . . , R(x, y − 1). But why is it primitive recursive?

Proposition 1.19. If R(~x, z) is primitive recursive, so is the function mR(~x, y)
which returns the least z less than y such that R(~x, z) holds, if there is one,
and y otherwise. We will write the function mR as

(min z < y)R(~x, z),

Proof. Note than there can be no z < 0 such that R(~x, z) since there is no
z < 0 at all. So mR(~x, 0) = 0.

In case the bound is of the form y + 1 we have three cases: (a) There is a
z < y such that R(~x, z), in which case mR(~x, z) = mR(~x, y). (b) There is no
such z < y but R(~x, y) holds, then mR(~x, y+ 1) = y. (c) There is no z < y+ 1
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such that R(~x, z), then mR(~z, y + 1) = y + 1. Note that there is a z < y such
that R(~x, z) iff mR(~x, y) 6= y. So,

mR(~x, 0) = 0

mR(~x, y + 1) =


mR(~z, y) if mR(~x, y) 6= y

y if mR(~x, y) = y and R(~x, y)

y + 1 otherwise.

Problem 1.5. Suppose R(~x, z) is primitive recursive. Define the function
m′R(~x, y) which returns the least z less than y such that R(~x, z) holds, if there
is one, and 0 otherwise, by primitive recursion from χR.

1.10 Primes

cmp:rec:pri:
sec

Bounded quantification and bounded minimization provide us with a good
deal of machinery to show that natural functions and relations are primitive
recursive. For example, consider the relation relation “x divides y”, written
x | y. The relation x | y holds if division of y by x is possible without remainder,
i.e., if y is an integer multiple of x. (If it doesn’t hold, i.e., the remainder when
dividing x by y is > 0, we write x - y.) In other words, x | y iff for some z,
x · z = y. Obviously, any such z, if it exists, must be ≤ y. So, we have that
x | y iff for some z ≤ y, x · z = y. We can define the relation x | y by bounded
existential quantification from = and multiplication by

x | y ⇔ (∃z ≤ y) (x · z) = y.

We’ve thus shown that x | y is primitive recursive.
A natural number x is prime if it is neither 0 nor 1 and is only divisible

by 1 and itself. In other words, prime numbers are such that, whenever y | x,
either y = 1 or y = x. To test if x is prime, we only have to check if y | x for
all y ≤ x, since if y > x, then automatically y - x. So, the relation Prime(x),
which holds iff x is prime, can be defined by

Prime(x)⇔ x ≥ 2 ∧ (∀y ≤ x) (y | x→ y = 1 ∨ y = x)

and is thus primitive recursive.
The primes are 2, 3, 5, 7, 11, etc. Consider the function p(x) which returns

the xth prime in that sequence, i.e., p(0) = 2, p(1) = 3, p(2) = 5, etc. (For
convenience we will often write p(x) as px (p0 = 2, p1 = 3, etc.)

If we had a function nextPrime(x), which returns the first prime number
larger than x, p can be easily defined using primitive recursion:

p(0) = 2

p(x+ 1) = nextPrime(p(x))
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Since nextPrime(x) is the least y such that y > x and y is prime, it can be
easily computed by unbounded search. But it can also be defined by bounded
minimization, thanks to a result due to Euclid: there is always a prime number
between x and x! + 1.

nextPrime(x) = (min y ≤ x! + 1) (y > x ∧ Prime(y)).

This shows, that nextPrime(x) and hence p(x) are (not just computable but)
primitive recursive.

(If you’re curious, here’s a quick proof of Euclid’s theorem. Suppose pn
is the largest prime ≤ x and consider the product p = p0 · p1 · · · · · pn of all
primes ≤ x. Either p + 1 is prime or there is a prime between x and p + 1.
Why? Suppose p + 1 is not prime. Then some prime number q | p + 1 where
q < p+ 1. None of the primes ≤ x divide p+ 1. (By definition of p, each of the
primes pi ≤ x divides p, i.e., with remainder 0. So, each of the primes pi ≤ x
divides p+ 1 with remainder 1, and so pi - p+ 1.) Hence, q is a prime > x and
< p+ 1. And p ≤ x!, so there is a prime > x and ≤ x! + 1.)

Problem 1.6. Define integer division d(x, y) using bounded minimization.

1.11 Sequences

cmp:rec:seq:
sec

The set of primitive recursive functions is remarkably robust. But we will
be able to do even more once we have developed a adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence 〈a0, a1, a2, . . . , ak〉 corresponds to
the number

pa0+1
0 · pa1+1

1 · pa2+1
2 · · · · · pak+1

k .

We add one to the exponents to guarantee that, for example, the sequences
〈2, 7, 3〉 and 〈2, 7, 3, 0, 0〉 have distinct numeric codes. We can take both 0
and 1 to code the empty sequence; for concreteness, let Λ denote 0.

The reason that this coding of sequences works is the so-called Fundamental
Theorem of Arithmetic: every natural number n ≥ 2 can be written in one and
only one way in the form

n = pa00 · p
a1
1 · · · · · p

ak
k

with ak ≥ 1. This guarantees that the mapping 〈〉(a0, . . . , ak) = 〈a0, . . . , ak〉 is
injective: different sequences are mapped to different numbers; to each number
only at most one sequence corresponds.

We’ll now show that the operations of determining the length of a sequence,
determining its ith element, appending an element to a sequence, and concate-
nating two sequences, are all primitive recursive.

Proposition 1.20. The function len(s), which returns the length of the se-
quence s, is primitive recursive.
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Proof. Let R(i, s) be the relation defined by

R(i, s) iff pi | s ∧ pi+1 - s.

R is clearly primitive recursive. Whenever s is the code of a non-empty se-
quence, i.e.,

s = pa0+1
0 · · · · · pak+1

k ,

R(i, s) holds if pi is the largest prime such that pi | s, i.e., i = k. The length
of s thus is i+ 1 iff pi is the largest prime that divides s, so we can let

len(s) =

{
0 if s = 0 or s = 1

1 + (min i < s)R(i, s) otherwise

We can use bounded minimization, since there is only one i that satisfies R(s, i)
when s is a code of a sequence, and if i exists it is less than s itself.

Proposition 1.21. The function append(s, a), which returns the result of ap-
pending a to the sequence s, is primitive recursive.

Proof. append can be defined by:

append(s, a) =

{
2a+1 if s = 0 or s = 1

s · pa+1
len(s) otherwise.

Proposition 1.22. The function element(s, i), which returns the ith element
of s (where the initial element is called the 0th), or 0 if i is greater than or
equal to the length of s, is primitive recursive.

Proof. Note that a is the ith element of s iff pa+1
i is the largest power of pi

that divides s, i.e., pa+1
i | s but pa+2

i - s. So:

element(s, i) =

{
0 if i ≥ len(s)

(min a < s) (pa+2
i - s) otherwise.

Instead of using the official names for the functions defined above, we intro-
duce a more compact notation. We will use (s)i instead of element(s, i), and
〈s0, . . . , sk〉 to abbreviate

append(append(. . . append(Λ, s0) . . . ), sk).

Note that if s has length k, the elements of s are (s)0, . . . , (s)k−1.

Proposition 1.23. The function concat(s, t), which concatenates two sequences,
is primitive recursive.
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Proof. We want a function concat with the property that

concat(〈a0, . . . , ak〉, 〈b0, . . . , bl〉) = 〈a0, . . . , ak, b0, . . . , bl〉.

We’ll use a “helper” function hconcat(s, t, n) which concatenates the first n
symbols of t to s. This function can be defined by primitive recursion as
follows:

hconcat(s, t, 0) = s

hconcat(s, t, n+ 1) = append(hconcat(s, t, n), (t)n)

Then we can define concat by

concat(s, t) = hconcat(s, t, len(t)).

We will write s _ t instead of concat(s, t).
It will be useful for us to be able to bound the numeric code of a sequence in

terms of its length and its largest element. Suppose s is a sequence of length k,
each element of which is less than equal to some number x. Then s has at most
k prime factors, each at most pk−1, and each raised to at most x + 1 in the
prime factorization of s. In other words, if we define

sequenceBound(x, k) = p
k·(x+1)
k−1 ,

then the numeric code of the sequence s described above is at most sequenceBound(x, k).
Having such a bound on sequences gives us a way of defining new functions

using bounded search. For example, we can define concat using bounded search.
All we need to do is write down a primitive recursive specification of the object
(number of the concatenated sequence) we are looking for, and a bound on how
far to look. The following works:

concat(s, t) = (min v < sequenceBound(s+ t, len(s) + len(t)))

(len(v) = len(s) + len(t) ∧
(∀i < len(s)) ((v)i = (s)i) ∧
(∀j < len(t)) ((v)len(s)+j = (t)j))

Problem 1.7. Show that there is a primitive recursive function sconcat(s)
with the property that

sconcat(〈s0, . . . , sk〉) = s0 _ . . . _ sk.

Problem 1.8. Show that there is a primitive recursive function tail(s) with
the property that

tail(Λ) = 0 and

tail(〈s0, . . . , sk〉) = 〈s1, . . . , sk〉.
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Proposition 1.24.cmp:rec:seq:

prop:subseq

The function subseq(s, i, n) which returns the subsequence
of s of length n beginning at the ith element, is primitive recursive.

Proof. Exercise.

Problem 1.9. Prove Proposition 1.24.

1.12 Trees

cmp:rec:tre:
sec

Sometimes it is useful to represent trees as natural numbers, just like we can
represent sequences by numbers and properties of and operations on them by
primitive recursive relations and functions on their codes. We’ll use sequences
and their codes to do this. A tree can be either a single node (possibly with a
label) or else a node (possibly with a label) connected to a number of subtrees.
The node is called the root of the tree, and the subtrees it is connected to its
immediate subtrees.

We code trees recursively as a sequence 〈k, d1, . . . , dk〉, where k is the num-
ber of immediate subtrees and d1, . . . , dk the codes of the immediate subtrees.
If the nodes have labels, they can be included after the immediate subtrees. So
a tree consisting just of a single node with label l would be coded by 〈0, l〉, and
a tree consisting of a root (labelled l1) connected to two single nodes (labelled
l2, l3) would be coded by 〈2, 〈0, l2〉, 〈0, l3〉, l1〉.

Proposition 1.25.cmp:rec:tre:

prop:subtreeseq

The function SubtreeSeq(t), which returns the code of a
sequence the elements of which are the codes of all subtrees of the tree with
code t, is primitive recursive.

Proof. First note that ISubtrees(t) = subseq(t, 1, (t)0) is primitive recursive
and returns the codes of the immediate subtrees of a tree t. Now we can
define a helper function hSubtreeSeq(t, n) which computes the sequence of all
subtrees which are n nodes remove from the root. The sequence of subtrees
of t which is 0 nodes removed from the root—in other words, begins at the root
of t—is the sequence consisting just of t. To obtain a sequence of all level n+1
subtrees of t, we concatenate the level n subtrees with a sequence consisting of
all immediate subtrees of the level n subtrees. To get a list of all these, note
that if f(x) is a primitive recursive function returning codes of sequences, then
gf (s, k) = f((s)0) _ . . . _ f((s)k) is also primivive recursive:

g(s, 0) = f((s)0)

g(s, k + 1) = g(s, k) _ f((s)k+1)

For instance, if s is a sequence of trees, then h(s) = gISubtrees(s, len(s)) gives
the sequence of the immediate subtrees of the elements of s. We can use it to
define hSubtreeSeq by

hSubtreeSeq(t, 0) = 〈t〉
hSubtreeSeq(t, n+ 1) = hSubtreeSeq(t, n) _ h(hSubtree(t, n)).
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The maximum level of subtrees in a tree coded by t, i.e., the maximum distance
between the root and a leaf node, is bounded by the code t. So a sequence of
codes of all subtrees of the tree coded by t is given by hSubtreeSeq(t, t).

Problem 1.10. The definition of hSubtreeSeq in the proof of Proposition 1.25
in general includes repetitions. Give an alternative definition which guarantees
that the code of a subtree occurs only once in the resulting list.

1.13 Other Recursions

cmp:rec:ore:
sec

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

h0(~x, 0) = f0(~x)

h1(~x, 0) = f1(~x)

h0(~x, y + 1) = g0(~x, y, h0(~x, y), h1(~x, y))

h1(~x, y + 1) = g1(~x, y, h0(~x, y), h1(~x, y))

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of h(~x, y + 1) in terms of all the values h(~x, 0),
. . . , h(~x, y), as in the following definition:

h(~x, 0) = f(~x)

h(~x, y + 1) = g(~x, y, 〈h(~x, 0), . . . , h(~x, y)〉).

The following schema captures this idea more succinctly:

h(~x, y) = g(~x, y, 〈h(~x, 0), . . . , h(~x, y − 1)〉)

with the understanding that the last argument to g is just the empty sequence
when y is 0. In either formulation, the idea is that in computing the “successor
step,” the function h can make use of the entire sequence of values computed
so far. This is known as a course-of-values recursion. For a particular example,
it can be used to justify the following type of definition:

h(~x, y) =

{
g(~x, y, h(~x, k(~x, y))) if k(~x, y) < y

f(~x) otherwise

In other words, the value of h at y can be computed in terms of the value of h
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

h(~x, y) = f(~x)

h(~x, y + 1) = g(~x, y, h(k(~x), y))

This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)
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1.14 Non-Primitive Recursive Functions

cmp:rec:npr:
sec

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the unary
primitive recursive functions, f0, f1, f2, . . . such that we can effectively compute
the value of fx on input y; in other words, the function g(x, y), defined by

g(x, y) = fx(y)

is computable. But then so is the function

h(x) = g(x, x) + 1

= fx(x) + 1.

For each primitive recursive function fi, the value of h and fi differ at i. So h
is computable, but not primitive recursive; and one can say the same about g.
This is an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation gn(x) denote g(g(. . . g(x))),
with n g’s in all; and define a sequence g0, g1, . . . of functions by

g0(x) = x+ 1

gn+1(x) = gxn(x)

You can confirm that each function gn is primitive recursive. Each successive
function grows much faster than the one before; g1(x) is equal to 2x, g2(x)
is equal to 2x · x, and g3(x) grows roughly like an exponential stack of x 2’s.
Ackermann’s function is essentially the function G(x) = gx(x), and one can
show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recursive
function; so it suffices to enumerate notations. We can assign a natural number
#(F ) to each notation F , recursively, as follows:

#(0) = 〈0〉
#(S) = 〈1〉

#(Pni ) = 〈2, n, i〉
#(Compk,l[H,G0, . . . , Gk−1]) = 〈3, k, l,#(H),#(G0), . . . ,#(Gk−1)〉

#(Recl[G,H]) = 〈4, l,#(G),#(H)〉

Here we are using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let fi be the
unary primitive recursive function with notation coded as i, if i codes such a
notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.
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(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We
will later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x, y) to be given by fx(y), where fx refers
to the enumeration we have just described. How do we know that g(x, y) is
computable? Intuitively, this is clear: to compute g(x, y), first “unpack” x,
and see if it a notation for a unary function; if it is, compute the value of that
function on input y.

digression You may already be convinced that (with some work!) one can write a
program (say, in Java or C++) that does this; and now we can appeal to the
Church-Turing thesis, which says that anything that, intuitively, is computable
can be computed by a Turing machine.

Of course, a more direct way to show that g(x, y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in particular,
avoid the Church-Turing thesis and appeals to intuition. But, as noted above,
working with Turing machines directly is unpleasant. Soon we will have built
up enough machinery to show that g(x, y) is computable, appealing to a model
of computation that can be simulated on a Turing machine: namely, the recur-
sive functions.

1.15 Partial Recursive Functions

cmp:rec:par:
sec

To motivate the definition of the recursive functions, note that our proof
that there are computable functions that are not primitive recursive actually
establishes much more. The argument was simple: all we used was the fact was
that it is possible to enumerate functions f0, f1, . . . such that, as a function of
x and y, fx(y) is computable. So the argument applies to any class of functions
that can be enumerated in such a way. This puts us in a bind: we would like
to describe the computable functions explicitly; but any explicit description of
a collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recursive
functions to obtain all the partial recursive functions? We need to do two
things:

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.
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2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only difference
is that we have to modify the definitions of composition and primitive recur-
sion to allow for the possibility that some of the terms in the definition are not
defined. If f and g are partial functions, we will write f(x) ↓ to mean that f
is defined at x, i.e., x is in the domain of f ; and f(x) ↑ to mean the opposite,
i.e., that f is not defined at x. We will use f(x) ' g(x) to mean that either
f(x) and g(x) are both undefined, or they are both defined and equal. We
will use these notations for more complicated terms as well. We will adopt the
convention that if h and g0, . . . , gk all are partial functions, then

h(g0(~x), . . . , gk(~x))

is defined if and only if each gi is defined at ~x, and h is defined at g0(~x),
. . . , gk(~x). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=” by “'”.

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f(x, ~z) is any
partial function on the natural numbers, define µx f(x, ~z) to be

the least x such that f(0, ~z), f(1, ~z), . . . , f(x, ~z) are all defined, and
f(x, ~z) = 0, if such an x exists

with the understanding that µx f(x, ~z) is undefined otherwise. This defines
µx f(x, ~z) uniquely.

explanationNote that our definition makes no reference to Turing machines, or al-
gorithms, or any specific computational model. But like composition and
primitive recursion, there is an operational, computational intuition behind
unbounded search. When it comes to the computability of a partial func-
tion, arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing µx f(x, ~z) will
amount to this: compute f(0, ~z), f(1, ~z), f(2, ~z) until a value of 0 is returned.
If any of the intermediate computations do not halt, however, neither does the
computation of µx f(x, ~z).

If R(x, ~z) is any relation, µx R(x, ~z) is defined to be µx (1 −̇ χR(x, ~z)). In
other words, µx R(x, ~z) returns the least value of x such that R(x, ~z) holds.
So, if f(x, ~z) is a total function, µx f(x, ~z) is the same as µx (f(x, ~z) = 0).
But note that our original definition is more general, since it allows for the
possibility that f(x, ~z) is not everywhere defined (whereas, in contrast, the
characteristic function of a relation is always total).

Definition 1.26. The set of partial recursive functions is the smallest set of
partial functions from the natural numbers to the natural numbers (of various
arities) containing zero, successor, and projections, and closed under composi-
tion, primitive recursion, and unbounded search.
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Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 1.27. cmp:rec:par:

defn:recursive-fn

The set of recursive functions is the set of partial recursive
functions that are total.

A recursive function is sometimes called “total recursive” to emphasize that
it is defined everywhere.

1.16 The Normal Form Theorem

cmp:rec:nft:
sec

Theorem 1.28 (Kleene’s Normal Form Theorem). cmp:rec:nft:

thm:kleene-nf

There is a primitive re-
cursive relation T (e, x, s) and a primitive recursive function U(s), with the
following property: if f is any partial recursive function, then for some e,

f(x) ' U(µs T (e, x, s))

for every x.

explanation The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f(x) ↓, the computation can be recorded
systematically and coded by some number s, and that s codes the computation
of f on input x can be checked primitive recursively using only x and the
definition e. This means that T is primitive recursive. Given the full record
of the computation s, the “upshot” of s is the value of f(x), and it can be
obtained from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. We can use the
numbers e as “names” of partial recursive functions, and write ϕe for the func-
tion f defined by the equation in the theorem. Note that any partial recursive
function can have more than one index—in fact, every partial recursive function
has infinitely many indices.

1.17 The Halting Problem

cmp:rec:hlt:
sec

The halting problem in general is the problem of deciding, given the specifi-
cation e (e.g., program) of a computable function and a number n, whether the
computation of the function on input n halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

h(e, n) =

{
1 if computation e halts on input n

0 otherwise,
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is not computable.

In the context of partial recursive functions, the role of the specification of a
program may be played by the index e given in Kleene’s normal form theorem.
If f is a partial recursive function, any e for which the equation in the normal
form theorem holds, is an index of f . Given a number e, the normal form
theorem states that

ϕe(x) ' U(µs T (e, x, s))

is partial recursive, and for every partial recursive f : N→ N, there is an e ∈ N
such that ϕe(x) ' f(x) for all x ∈ N. In fact, for each such f there is not just
one, but infinitely many such e. The halting function h is defined by

h(e, x) =

{
1 if ϕe(x) ↓
0 otherwise.

Note that h(e, x) = 0 if ϕe(x) ↑, but also when e is not the index of a partial
recursive function at all.

Theorem 1.29.cmp:rec:hlt:

thm:halting-problem

The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

d(y) =

{
1 if h(y, y) = 0

µx x 6= x otherwise.

From this definition it follows that

1. d(y) ↓ iff ϕy(y) ↑ or y is not the index of a partial recursive function.

2. d(y) ↑ iff ϕy(y) ↓.

If h were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index ed. Consider the value of
h(ed, ed). There are two possible cases, 0 and 1.

1. If h(ed, ed) = 1 then ϕed(ed) ↓. But ϕed ' d, and d(ed) is defined iff
h(ed, ed) = 0. So h(ed, ed) 6= 1.

2. If h(ed, ed) = 0 then either ed is not the index of a partial recursive
function, or it is and ϕed(ed) ↑. But again, ϕed ' d, and d(ed) is undefined
iff ϕed(ed) ↓.

The upshot is that ed cannot, after all, be the index of a partial recursive
function. But if h were partial recursive, d would be too, and so our definition
of ed as an index of it would be admissible. We must conclude that h cannot
be partial recursive.
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1.18 General Recursive Functions

cmp:rec:gen:
sec

There is another way to obtain a set of total functions. Say a total func-
tion f(x, ~z) is regular if for every sequence of natural numbers ~z, there is an
x such that f(x, ~z) = 0. In other words, the regular functions are exactly
those functions to which one can apply unbounded search, and end up with a
total function. One can, conservatively, restrict unbounded search to regular
functions:

Definition 1.30. cmp:rec:gen:

defn:general-recursive

The set of general recursive functions is the smallest set
of functions from the natural numbers to the natural numbers (of various ari-
ties) containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 1.30 and Definition 1.27 is that in the latter one is allowed to use
partial recursive functions along the way; the only requirement is that the
function you end up with at the end is total. So the word “general,” a historic
relic, is a misnomer; on the surface, Definition 1.30 is less general than Defini-
tion 1.27. But, fortunately, the difference is illusory; though the definitions are
different, the set of general recursive functions and the set of recursive functions
are one and the same.
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Chapter 2

The Lambda Calculus

This chapter needs to be expanded (issue #66).

2.1 Introduction

cmp:lam:int:
sec

The lambda calculus was originally designed by Alonzo Church in the early
1930s as a basis for constructive logic, and not as a model of the computable
functions. But soon after the Turing computable functions, the recursive func-
tions, and the general recursive functions were shown to be equivalent, lambda
computability was added to the list. The fact that this initially came as a small
surprise makes the characterization all the more interesting.

Lambda notation is a convenient way of referring to a function directly
by a symbolic expression which defines it, instead of defining a name for it.
Instead of saying “let f be the function defined by f(x) = x + 3,” one can
say, “let f be the function λx. (x + 3).” In other words, λx. (x + 3) is just a
name for the function that adds three to its argument. In this expression, x
is a dummy variable, or a placeholder: the same function can just as well be
denoted by λy. (y+3). The notation works even with other parameters around.
For example, suppose g(x, y) is a function of two variables, and k is a natural
number. Then λx. g(x, k) is the function which maps any x to g(x, k).

This way of defining a function from a symbolic expression is known as
lambda abstraction. The flip side of lambda abstraction is application: assum-
ing one has a function f (say, defined on the natural numbers), one can apply
it to any value, like 2. In conventional notation, of course, we write f(2) for
the result.

What happens when you combine lambda abstraction with application?
Then the resulting expression can be simplified, by “plugging” the applicand
in for the abstracted variable. For example,

(λx. (x+ 3))(2)
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can be simplified to 2 + 3.
Up to this point, we have done nothing but introduce new notations for

conventional notions. The lambda calculus, however, represents a more radical
departure from the set-theoretic viewpoint. In this framework:

1. Everything denotes a function.

2. Functions can be defined using lambda abstraction.

3. Anything can be applied to anything else.

For example, if F is a term in the lambda calculus, F (F ) is always assumed
to be meaningful. This liberal framework is known as the untyped lambda
calculus, where “untyped” means “no restriction on what can be applied to
what.”

digression There is also a typed lambda calculus, which is an important variation on the
untyped version. Although in many ways the typed lambda calculus is similar
to the untyped one, it is much easier to reconcile with a classical set-theoretic
framework, and has some very different properties.

Research on the lambda calculus has proved to be central in theoretical
computer science, and in the design of programming languages. LISP, designed
by John McCarthy in the 1950s, is an early example of a language that was
influenced by these ideas.

2.2 The Syntax of the Lambda Calculus

cmp:lam:syn:
sec

One starts with a sequence of variables x, y, z, . . . and some constant sym-
bols a, b, c, . . . . The set of terms is defined inductively, as follows:

1. Each variable is a term.

2. Each constant is a term.

3. If M and N are terms, so is (MN).

4. If M is a term and x is a variable, then (λx.M) is a term.

The system without any constants at all is called the pure lambda calculus.
We will follow a few notational conventions:

1. When parentheses are left out, application takes place from left to right.
For example, if M , N , P , and Q are terms, then MNPQ abbreviates
(((MN)P )Q).

2. Again, when parentheses are left out, lambda abstraction is to be given
the widest scope possible. From example, λx.MNP is read λx. (MNP ).

3. A lambda can be used to abstract multiple variables. For example,
λxyz.M is short for λx. λy. λz.M .
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For example,

λxy. xxyxλz. xz

abbreviates

λx. λy. ((((xx)y)x)λz. (xz)).

You should memorize these conventions. They will drive you crazy at first, but
you will get used to them, and after a while they will drive you less crazy than
having to deal with a morass of parentheses.

Two terms that differ only in the names of the bound variables are called
α-equivalent; for example, λx. x and λy. y. It will be convenient to think of
these as being the “same” term; in other words, when we say that M and N are
the same, we also mean “up to renamings of the bound variables.” Variables
that are in the scope of a λ are called “bound”, while others are called “free.”
There are no free variables in the previous example; but in

(λz. yz)x

y and x are free, and z is bound.

2.3 Reduction of Lambda Terms

cmp:lam:red:
sec

What can one do with lambda terms? Simplify them. If M and N are
any lambda terms and x is any variable, we can use M [N/x] to denote the
result of substituting N for x in M , after renaming any bound variables of M
that would interfere with the free variables of N after the substitution. For
example,

(λw. xxw)[yyz/x] = λw. (yyz)(yyz)w.

digressionAlternative notations for substitution are [N/x]M , M [N/x], and alsoM [x/N ].
Beware!

Intuitively, (λx.M)N and M [N/x] have the same meaning; the act of re-
placing the first term by the second is called β-conversion. More generally, if it
is possible convert a term P to P ′ by β-conversion of some subterm, one says
P β-reduces to P ′ in one step. If P can be converted to P ′ with any number
of one-step reductions (possibly none), then P β-reduces to P ′. A term that
cannot be β-reduced any further is called β-irreducible, or β-normal. I will say
“reduces” instead of “β-reduces,” etc., when the context is clear.

Let us consider some examples.

1. We have

(λx. xxy)λz. z .1 (λz. z)(λz. z)y

.1 (λz. z)y

.1 y

computability rev: ee4902c (2018-12-01) by OLP / CC–BY 31

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


2. “Simplifying” a term can make it more complex:

(λx. xxy)(λx. xxy) .1 (λx. xxy)(λx. xxy)y

.1 (λx. xxy)(λx. xxy)yy

.1 . . .

3. It can also leave a term unchanged:

(λx. xx)(λx. xx) .1 (λx. xx)(λx. xx)

4. Also, some terms can be reduced in more than one way; for example,

(λx. (λy. yx)z)v .1 (λy. yv)z

by contracting the outermost application; and

(λx. (λy. yx)z)v .1 (λx. zx)v

by contracting the innermost one. Note, in this case, however, that both
terms further reduce to the same term, zv.

The final outcome in the last example is not a coincidence, but rather
illustrates a deep and important property of the lambda calculus, known as
the “Church-Rosser property.”

2.4 The Church-Rosser Property

cmp:lam:cr:
sec

Theorem 2.1. cmp:lam:cr:

thm:church-rosser

Let M , N1, and N2 be terms, such that M .N1 and M .N2.
Then there is a term P such that N1 . P and N2 . P .

Corollary 2.2. Suppose M can be reduced to normal form. Then this normal
form is unique.

Proof. If M .N1 and M .N2, by the previous theorem there is a term P such
that N1 and N2 both reduce to P . If N1 and N2 are both in normal form, this
can only happen if N1 = P = N2.

Finally, we will say that two terms M and N are β-equivalent, or just
equivalent, if they reduce to a common term; in other words, if there is some
P such that M . P and N . P . This is written M ≡ N . Using Theorem 2.1,
you can check that ≡ is an equivalence relation, with the additional property
that for every M and N , if M . N or N .M , then M ≡ N . (In fact, one can
show that ≡ is the smallest equivalence relation having this property.)
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2.5 Representability by Lambda Terms

cmp:lam:rep:
sec

How can the lambda calculus serve as a model of computation? At first, it is
not even clear how to make sense of this statement. To talk about computability
on the natural numbers, we need to find a suitable representation for such
numbers. Here is one that works surprisingly well.

Definition 2.3. For each natural number n, define the numeral n to be the
lambda term λx. λy. (x(x(x(. . . x(y))))), where there are n x’s in all.

The terms n are “iterators”: on input f , n returns the function mapping y
to fn(y). Note that each numeral is normal. We can now say what it means
for a lambda term to “compute” a function on the natural numbers.

Definition 2.4. Let f(x0, . . . , xn−1) be an n-ary partial function from N to N.
We say a lambda term X represents f if for every sequence of natural numbers
m0, . . . , mn−1,

Xm0m1 . . .mn−1 . f(m0,m1, . . . ,mn−1)

if f(m0, . . . ,mn−1) is defined, and Xm0m1 . . .mn−1 has no normal form oth-
erwise.

Theorem 2.5.cmp:lam:rep:

thm:lambda-rep

A function f is a partial computable function if and only if it
is represented by a lambda term.

explanationThis theorem is somewhat striking. As a model of computation, the lambda
calculus is a rather simple calculus; the only operations are lambda abstrac-
tion and application! From these meager resources, however, it is possible to
implement any computational procedure.

2.6 Lambda Representable Functions are Computable

cmp:lam:cmp:
sec

Theorem 2.6.cmp:lam:cmp:

thm:lambda-computable

If a partial function f is represented by a lambda term, it is
computable.

Proof. Suppose a function f , is represented by a lambda term X. Let us
describe an informal procedure to compute f . On input m0, . . . , mn−1, write
down the term Xm0 . . .mn−1. Build a tree, first writing down all the one-step
reductions of the original term; below that, write all the one-step reductions
of those (i.e., the two-step reductions of the original term); and keep going. If
you ever reach a numeral, return that as the answer; otherwise, the function is
undefined.

An appeal to Church’s thesis tells us that this function is computable. A
better way to prove the theorem would be to give a recursive description of this
search procedure. For example, one could define a sequence primitive recursive
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functions and relations, “IsASubterm,” “Substitute,” “ReducesToInOneStep,”
“ReductionSequence,” “Numeral,” etc. The partial recursive procedure for
computing f(m0, . . . ,mn−1) is then to search for a sequence of one-step reduc-
tions starting with Xm0 . . .mn−1 and ending with a numeral, and return the
number corresponding to that numeral. The details are long and tedious but
otherwise routine.

2.7 Computable Functions are Lambda Representable

cmp:lam:lrp:
sec

Theorem 2.7. cmp:lam:lrp:

thm:computable-lambda

Every computable partial function if representable by a lambda
term.

Proof. Wwe need to show that every partial computable function f is rep-
resented by a lambda term f . By Kleene’s normal form theorem, it suffices
to show that every primitive recursive function is represented by a lambda
term, and then that the functions so represented are closed under suitable
compositions and unbounded search. To show that every primitive recursive
function is represented by a lambda term, it suffices to show that the initial
functions are represented, and that the partial functions that are represented
by lambda terms are closed under composition, primitive recursion, and un-
bounded search.

We will use a more conventional notation to make the rest of the proof more
readable. For example, we will write M(x, y, z) instead of Mxyz. While this
is suggestive, you should remember that terms in the untyped lambda calculus
do not have associated arities; so, for the same term M , it makes just as much
sense to write M(x, y) and M(x, y, z, w). But using this notation indicates
that we are treating M as a function of three variables, and helps make the
intentions behind the definitions clearer. In a similar way, we will say “define
M by M(x, y, z) = . . . ” instead of “define M by M = λx. λy. λz. . . ..”

2.8 The Basic Primitive Recursive Functions are
Lambda Representable

cmp:lam:bas:
sec

Lemma 2.8. The functions 0, S, and Pni are lambda representable.

Proof. Zero, 0, is just λx. λy. y.
The successor function S, is defined by S(u) = λx. λy. x(uxy). You should

think about why this works; for each numeral n, thought of as an iterator,
and each function f , S(n, f) is a function that, on input y, applies f n times
starting with y, and then applies it once more.

There is nothing to say about projections: Pni (x0, . . . , xn−1) = xi. In other
words, by our conventions, Pni is the lambda term λx0. . . . λxn−1. xi.
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2.9 Lambda Representable Functions Closed under
Composition

cmp:lam:com:
sec

Lemma 2.9. The lambda representable functions are closed under composition.

Proof. Suppose f is defined by composition from h, g0, . . . , gk−1. Assuming h,
g0, . . . , gk−1 are represented by h, g0, . . . , gk−1, respectively, we need to find
a term f representing f . But we can simply define f by

f(x0, . . . , xl−1) = h(g0(x0, . . . , xl−1), . . . , gk−1(x0, . . . , xl−1)).

In other words, the language of the lambda calculus is well suited to represent
composition.

2.10 Lambda Representable Functions Closed under
Primitive Recursion

cmp:lam:pr:
sec

When it comes to primitive recursion, we finally need to do some work. We
will have to proceed in stages. As before, on the assumption that we already
have terms g and h representing functions g and h, respectively, we want a
term f representing the function f defined by

f(0, ~z) = g(~z)

f(x+ 1, ~z) = h(z, f(x, ~z), ~z).

So, in general, given lambda terms G′ and H ′, it suffices to find a term F such
that

F (0, ~z) ≡ G′(~z)
F (n+ 1, ~z) ≡ H ′(n, F (n, ~z), ~z)

for every natural number n; the fact that G′ and H ′ represent g and h means
that whenever we plug in numerals ~m for ~z, F (n+ 1, ~m) will normalize to the
right answer.

But for this, it suffices to find a term F satisfying

F (0) ≡ G
F (n+ 1) ≡ H(n, F (n))

for every natural number n, where

G = λ~z.G′(~z) and

H(u, v) = λ~z.H ′(u, v(u, ~z), ~z).
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In other words, with lambda trickery, we can avoid having to worry about the
extra parameters ~z—they just get absorbed in the lambda notation.

Before we define the term F , we need a mechanism for handling ordered
pairs. This is provided by the next lemma.

Lemma 2.10. There is a lambda term D such that for each pair of lambda
terms M and N , D(M,N)(0) . M and D(M,N)(1) . N .

Proof. First, define the lambda term K by

K(y) = λx. y.

In other words, K is the term λy. λx. y. Looking at it differently, for every M ,
K(M) is a constant function that returns M on any input.

Now define D(x, y, z) by D(x, y, z) = z(K(y))x. Then we have

D(M,N, 0) . 0(K(N))M .M and

D(M,N, 1) . 1(K(N))M .K(N)M .N,

as required.

The idea is that D(M,N) represents the pair 〈M,N〉, and if P is assumed
to represent such a pair, P (0) and P (1) represent the left and right projections,
(P )0 and (P )1. We will use the latter notations.

Lemma 2.11. The lambda representable functions are closed under primitive
recursion.

Proof. We need to show that given any terms, G and H, we can find a term F
such that

F (0) ≡ G
F (n+ 1) ≡ H(n, F (n))

for every natural number n. The idea is roughly to compute sequences of pairs

〈0, F (0)〉, 〈1, F (1)〉, . . . ,

using numerals as iterators. Notice that the first pair is just 〈0, G〉. Given a
pair 〈n, F (n)〉, the next pair, 〈n+ 1, F (n+ 1)〉 is supposed to be equivalent to
〈n+ 1, H(n, F (n))〉. We will design a lambda term T that makes this one-step
transition.

The details are as follows. Define T (u) by

T (u) = 〈S((u)0), H((u)0, (u)1)〉.

Now it is easy to verify that for any number n,

T (〈n,M〉) . 〈n+ 1, H(n,M)〉.
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As suggested above, given G and H, define F (u) by

F (u) = (u(T, 〈0, G〉))1.

In other words, on input n, F iterates T n times on 〈0, G〉, and then returns
the second component. To start with, we have

1. 0(T, 〈0, G〉) ≡ 〈0, G〉

2. F (0) ≡ G

By induction on n, we can show that for each natural number one has the
following:

1. n+ 1(T, 〈0, G〉) ≡ 〈n+ 1, F (n+ 1)〉

2. F (n+ 1) ≡ H(n, F (n))

For the second clause, we have

F (n+ 1) . (n+ 1(T, 〈0, G〉))1
≡ (T (n(T, 〈0, G〉)))1
≡ (T (〈n, F (n)〉))1
≡ (〈n+ 1, H(n, F (n))〉)1
≡ H(n, F (n)).

Here we have used the induction hypothesis on the second-to-last line. For the
first clause, we have

n+ 1(T, 〈0, G〉) ≡ T (n(T, 〈0, G〉))
≡ T (〈n, F (n)〉)
≡ 〈n+ 1, H(n, F (n))〉
≡ 〈n+ 1, F (n+ 1)〉.

Here we have used the second clause in the last line. So we have shown F (0) ≡
G and, for every n, F (n+ 1) ≡ H(n, F (n)), which is exactly what we needed.

2.11 Fixed-Point Combinators

cmp:lam:fix:
sec

Suppose you have a lambda term g, and you want another term k with the
property that k is β-equivalent to gk. Define terms

diag(x) = xx

and
l(x) = g(diag(x))
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using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes
Y = λg. ((λx. g(xx))(λx. g(xx)))

then Y g and g(Y g) reduce to a common term; so Y g ≡β g(Y g). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Y g reduces to g(Y g), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

2.12 Lambda Representable Functions Closed under
Minimization

cmp:lam:min:
sec

Lemma 2.12. Suppose f(x, y) is primitive recursive. Let g be defined by

g(x) ' µy f(x, y).

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) '

{
n if f(x, n) = 0

hx(n+ 1) otherwise.

Here are the details. Since f is primitive recursive, it is represented by
some term F . Remember that we also have a lambda term D, such that
D(M,N, 0̄).M and D(M,N, 1̄).N . Fixing x for the moment, to represent hx
we want to find a term H (depending on x) satisfying

H(n) ≡ D(n,H(S(n)), F (x, n)).

We can do this using the fixed-point term Y . First, let U be the term

λh. λz.D(z, (h(Sz)), F (x, z)),
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and then let H be the term Y U . Notice that the only free variable in H is x.
Let us show that H satisfies the equation above.

By the definition of Y , we have

H = Y U ≡ U(Y U) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H,n)

. D(n,H(S(n)), F (x, n)),

as required. Notice that if you substitute a numeral m for x in the last line,
the expression reduces to n if F (m,n) reduces to 0, and it reduces to H(S(n))
if F (m,n) reduces to any other numeral.

To finish off the proof, let G be λx.H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.
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Chapter 3

Computability Theory

Material in this chapter should be reviewed and expanded. In paticular,
there are no exercises yet.

3.1 Introduction

cmp:thy:int:
sec

The branch of logic known as Computability Theory deals with issues having
to do with the computability, or relative computability, of functions and sets.
It is a evidence of Kleene’s influence that the subject used to be known as
Recursion Theory, and today, both names are commonly used.

Let us call a function f : N 7→ N partial computable if it can be computed
in some model of computation. If f is total we will simply say that f is
computable. A relation R with computable characteristic function χR is also
called computable. If f and g are partial functions, we will write f(x) ↓ to
mean that f is defined at x, i.e., x is in the domain of f ; and f(x) ↑ to mean
the opposite, i.e., that f is not defined at x. We will use f(x) ' g(x) to mean
that either f(x) and g(x) are both undefined, or they are both defined and
equal.

One can explore the subject without having to refer to a specific model
of computation. To do this, one shows that there is a universal partial com-
putable function, Un(k, x). This allows us to enumerate the partial computable
functions. We will adopt the notation ϕk to denote the k-th unary partial
computable function, defined by ϕk(x) ' Un(k, x). (Kleene used {k} for this
purpose, but this notation has not been used as much recently.) Slightly more
generally, we can uniformly enumerate the partial computable functions of ar-
bitrary arities, and we will use ϕnk to denote the k-th n-ary partial recursive
function.

Recall that if f(~x, y) is a total or partial function, then µy f(~x, y) is the
function of ~x that returns the least y such that f(~x, y) = 0, assuming that all of
f(~x, 0), . . . , f(~x, y−1) are defined; if there is no such y, µy f(~x, y) is undefined.
If R(~x, y) is a relation, µy R(~x, y) is defined to be the least y such that R(~x, y) is
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true; in other words, the least y such that one minus the characteristic function
of R is equal to zero at ~x, y.

To show that a function is computable, there are two ways one can proceed:

1. Rigorously: describe a Turing machine or partial recursive function ex-
plicitly, and show that it computes the function you have in mind;

2. Informally: describe an algorithm that computes it, and appeal to Church’s
thesis.

There is no fine line between the two; a detailed description of an algorithm
should provide enough information so that it is relatively clear how one could,
in principle, design the right Turing machine or sequence of partial recursive
definitions. Fully rigorous definitions are unlikely to be informative, and we
will try to find a happy medium between these two approaches; in short, we
will try to find intuitive yet rigorous proofs that the precise definitions could
be obtained.

3.2 Coding Computations

cmp:thy:cod:
sec

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way.
For instance, you can think of Turing machine specifications, recursive
definitions, or programs in a programming language as providing these
definitions.

2. Describe the complete record of the computation of a function given
by some definition for a given input. For instance, a Turing machine
computation can be described by the sequence of configurations (state of
the machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of
how a computable function with a given definition would be computed
for a given input.

4. Extract from such a description of the complete record of a computation
the value of the function for a given input. For instance, the contents of
the tape in the very last step of a halting Turing machine computation
is the value.

Using coding, it is possible to assign to each description of a computable
function a numerical index in such a way that the instructions can be recovered
from the index in a computable way. Similarly, the complete record of a com-
putation can be coded by a single number as well. The resulting arithmetical
relation “s codes the record of computation of the function with index e for
input x” and the function “output of computation sequence with code s” are
then computable; in fact, they are primitive recursive.
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This fundamental fact is very powerful, and allows us to prove a number
of striking and important results about computability, independently of the
model of computation chosen.

3.3 The Normal Form Theorem

cmp:thy:nfm:
sec

Theorem 3.1 (Kleene’s Normal Form Theorem). cmp:thy:nfm:

thm:normal-form

There are a primitive re-
cursive relation T (k, x, s) and a primitive recursive function U(s), with the
following property: if f is any partial computable function, then for some k,

f(x) ' U(µs T (k, x, s))

for every x.

Proof Sketch. For any model of computation one can rigorously define a de-
scription of the computable function f and code such description using a nat-
ural number k. One can also rigorously define a notion of “computation se-
quence” which records the process of computing the function with index k for
input x. These computation sequences can likewise be coded as numbers s.
This can be done in such a way that (a) it is decidable whether a number s
codes the computation sequence of the function with index k on input x and
(b) what the end result of the computation sequence coded by s is. In fact, the
relation in (a) and the function in (b) are primitive recursive.

explanation In order to give a rigorous proof of the Normal Form Theorem, we would
have to fix a model of computation and carry out the coding of descriptions of
computable functions and of computation sequences in detail, and verify that
the relation T and function U are primitive recursive. For most applications,
it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in
slogan form: µs T (k, x, s) searches for a computation sequence of the function
with index k on input x, and U returns the output of the computation sequence
if one can be found.

T and U can be used to define the enumeration ϕ0, ϕ1, ϕ2, . . . . From now
on, we will assume that we have fixed a suitable choice of T and U , and take
the equation

ϕe(x) ' U(µs T (e, x, s))

to be the definition of ϕe.
Here is another useful fact:

Theorem 3.2. Every partial computable function has infinitely many indices.

Again, this is intuitively clear. Given any (description of) a computable
function, one can come up with a different description which computes the
same function (input-output pair) but does so, e.g., by first doing something
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that has no effect on the computation (say, test if 0 = 0, or count to 5, etc.).
The index of the altered description will always be different from the original
index. Both are indices of the same function, just computed slightly differently.

3.4 The s-m-n Theorem

cmp:thy:smn:
sec

explanationThe next theorem is known as the “s-m-n theorem,” for a reason that will
be clear in a moment. The hard part is understanding just what the theorem
says; once you understand the statement, it will seem fairly obvious.

Theorem 3.3.cmp:thy:smn:

thm:s-m-n

For each pair of natural numbers n and m, there is a primitive
recursive function smn such that for every sequence x, a0, . . . , am−1, y0 ,. . . ,
yn−1, we have

ϕnsmn (x,a0,...,am−1)
(y0, . . . , yn−1) ' ϕm+n

x (a0, . . . , am−1, y0, . . . , yn−1).

explanationIt is helpful to think of smn as acting on programs. That is, smn takes a
program, x, for an (m+ n)-ary function, as well as fixed inputs a0, . . . , am−1;
and it returns a program, smn (x, a0, . . . , am−1), for the n-ary function of the
remaining arguments. It you think of x as the description of a Turing machine,
then smn (x, a0, . . . , am−1) is the Turing machine that, on input y0, . . . , yn−1,
prepends a0, . . . , am−1 to the input string, and runs x. Each smn is then just
a primitive recursive function that finds a code for the appropriate Turing
machine.

3.5 The Universal Partial Computable Function

cmp:thy:uni:
sec

Theorem 3.4.cmp:thy:uni:

thm:univ-comp

There is a universal partial computable function Un(k, x). In
other words, there is a function Un(k, x) such that:

1. Un(k, x) is partial computable.

2. If f(x) is any partial computable function, then there is a natural number
k such that f(x) ' Un(k, x) for every x.

Proof. Let Un(k, x) ' U(µs T (k, x, s)) in Kleene’s normal form theorem.

explanationThis is just a precise way of saying that we have an effective enumeration of
the partial computable functions; the idea is that if we write fk for the function
defined by fk(x) = Un(k, x), then the sequence f0, f1, f2, . . . includes all the
partial computable functions, with the property that fk(x) can be computed
“uniformly” in k and x. For simplicity, we am using a binary function that
is universal for unary functions, but by coding sequences of numbers we can
easily generalize this to more arguments. For example, note that if f(x, y, z) is
a 3-place partial recursive function, then the function g(x) ' f((x)0, (x)1, (x)2)
is a unary recursive function.
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3.6 No Universal Computable Function

cmp:thy:nou:
sec

Theorem 3.5. cmp:thy:nou:

thm:no-univ

There is no universal computable function. In other words,
the universal function Un′(k, x) = ϕk(x) is not computable.

Proof. This theorem says that there is no total computable function that is
universal for the total computable functions. The proof is a simple diagonal-
ization: if Un′(k, x) were total and computable, then

d(x) = Un′(x, x) + 1

would also be total and computable. However, for every k, d(k) is not equal to
Un′(k, k).

explanation Theorem Theorem 3.4 above shows that we can get around this diagonal-
ization argument, but only at the expense of allowing partial functions. It is
worth trying to understand what goes wrong with the diagonalization argu-
ment, when we try to apply it in the partial case. In particular, the function
h(x) = Un(x, x) + 1 is partial recursive. Suppose h is the k-th function in the
enumeration; what can we say about h(k)?

3.7 The Halting Problem

cmp:thy:hlt:
sec

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input x, it is natural to ask
if we can decide whether this is the case. And in fact, it is not. For the
Turing machine model of computation, this means that whether a given Turing
machine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” I
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem 3.6. cmp:thy:hlt:

thm:halting-problem

Let

h(k, x) =

{
1 if Un(k, x) is defined

0 otherwise.

Then h is not computable.

Proof. If h were computable, we would have a universal computable function,
as follows. Suppose h is computable, and define

Un′(k, x) =

{
fnUn(k, x) if h(k, x) = 1

0 otherwise.
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But now Un′(k, x) is a total function, and is computable if h is. For instance,
we could define g using primitive recursion, by

g(0, k, x) ' 0

g(y + 1, k, x) ' Un(k, x);

then

Un′(k, x) ' g(h(k, x), k, x).

And since Un′(k, x) agrees with Un(k, x) wherever the latter is defined, Un′ is
universal for those partial computable functions that happen to be total. But
this contradicts Theorem 3.5.

Proof. Suppose h(k, x) were computable. Define the function g by

g(x) =

{
0 if h(x, x) = 0

undefined otherwise.

The function g is partial computable; for example, one can define it as µy h(x, x) =
0. So, for some k, g(x) ' Un(k, x) for every x. Is g defined at k? If it is, then,
by the definition of g, h(k, k) = 0. By the definition of f , this means that
Un(k, k) is undefined; but by our assumption that g(k) ' Un(k, x) for every
x, this means that g(k) is undefined, a contradiction. On the other hand, if
g(k) is undefined, then h(k, k) 6= 0, and so h(k, k) = 1. But this means that
Un(k, k) is defined, i.e., that g(k) is defined.

explanationWe can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words,
if H reports that x halts on input x, G goes into an infinite loop, and if H
reports that x doesn’t halt on input x, then G just halts. Does G halt on
input G? The argument above shows that it does if and only if it doesn’t—a
contradiction. So our supposition that there is a such Turing machine H, is
false.

3.8 Comparison with Russell’s Paradox

cmp:thy:rus:
sec

It is instructive to compare and contrast the arguments in this section with
Russell’s paradox:

1. Russell’s paradox: let S = {x : x /∈ x}. Then x ∈ S if and only if x /∈ S,
a contradiction.

Conclusion: There is no such set S. Assuming the existence of a “set of
all sets” is inconsistent with the other axioms of set theory.
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2. A modification of Russell’s paradox: let F be the “function” from the set
of all functions to {0, 1}, defined by

F (f) =

{
1 if f is in the domain of f , and f(f) = 0

0 otherwise

A similar argument shows that F (F ) = 0 if and only if F (F ) = 1, a
contradiction.

Conclusion: F is not a function. The “set of all functions” is too big to
be the domain of a function.

3. The diagonalization argument: let f0, f1, . . . be the enumeration of the
partial computable functions, and let G : N→ {0, 1} be defined by

G(x) =

{
1 if fx(x) ↓= 0

0 otherwise

If G is computable, then it is the function fk for some k. But then
G(k) = 1 if and only if G(k) = 0, a contradiction.

Conclusion: G is not computable. Note that according to the axioms of
set theory, G is still a function; there is no paradox here, just a clarifica-
tion.

That talk of partial functions, computable functions, partial computable
functions, and so on can be confusing. The set of all partial functions from N
to N is a big collection of objects. Some of them are total, some of them are
computable, some are both total and computable, and some are neither. Keep
in mind that when we say “function,” by default, we mean a total function.
Thus we have:

1. computable functions

2. partial computable functions that are not total

3. functions that are not computable

4. partial functions that are neither total nor computable

To sort this out, it might help to draw a big square representing all the partial
functions from N to N, and then mark off two overlapping regions, correspond-
ing to the total functions and the computable partial functions, respectively.
It is a good exercise to see if you can describe an object in each of the resulting
regions in the diagram.

46 computability rev: ee4902c (2018-12-01) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


3.9 Computable Sets

cmp:thy:cps:
sec

We can extend the notion of computability from computable functions to
computable sets:

Definition 3.7. Let S be a set of natural numbers. Then S is computable iff
its characteristic function is. In other words, S is computable iff the function

χS(x) =

{
1 if x ∈ S
0 otherwise

is computable. Similarly, a relation R(x0, . . . , xk−1) is computable if and only
if its characteristic function is.

explanationComputable sets are also called decidable.
Notice that we now have a number of notions of computability: for partial

functions, for functions, and for sets. Do not get them confused! The Turing
machine computing a partial function returns the output of the function, for
input values at which the function is defined; the Turing machine computing
a set returns either 1 or 0, after deciding whether or not the input value is in
the set or not.

3.10 Computably Enumerable Sets

cmp:thy:ces:
sec

Definition 3.8. A set is computably enumerable if it is empty or the range of
a computable function.

Historical Remarks Computably enumarable sets are also called recursively
enumerable instead. This is the original terminology, and today both are com-
monly used, as well as the abbreviations “c.e.” and “r.e.”

explanationYou should think about what the definition means, and why the terminology
is appropriate. The idea is that if S is the range of the computable function f ,
then

S = {f(0), f(1), f(2), . . . },
and so f can be seen as “enumerating” the elements of S. Note that according
to the definition, f need not be an increasing function, i.e., the enumeration
need not be in increasing order. In fact, f need not even be injective, so that
the constant function f(x) = 0 enumerates the set {0}.

Any computable set is computably enumerable. To see this, suppose S is
computable. If S is empty, then by definition it is computably enumerable.
Otherwise, let a be any element of S. Define f by

f(x) =

{
x if χS(x) = 1

a otherwise.

Then f is a computable function, and S is the range of f .
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3.11 Equivalent Defininitions of Computably
Enumerable Sets

cmp:thy:eqc:
sec

The following gives a number of important equivalent statements of what
it means to be computably enumerable.

Theorem 3.9. cmp:thy:eqc:

thm:ce-equiv

Let S be a set of natural numbers. Then the following are
equivalent:

1. S is computably enumerable.

2. S is the range of a partial computable function.

3. S is empty or the range of a primitive recursive function.

4. S is the domain of a partial computable function.

explanation The first three clauses say that we can equivalently take any non-empty
computably enumerable set to be enumerated by either a computable function,
a partial computable function, or a primitive recursive function. The fourth
clause tells us that if S is computably enumerable, then for some index e,

S = {x : ϕe(x) ↓}.

In other words, S is the set of inputs on for which the computation of ϕe
halts. For that reason, computably enumerable sets are sometimes called semi-
decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t,
you never get a “no”!

Proof. Since every primitive recursive function is computable and every com-
putable function is partial computable, (3) implies (1) and (1) implies (2).
(Note that if S is empty, S is the range of the partial computable function that
is nowhere defined.) If we show that (2) implies (3), we will have shown the
first three clauses equivalent.

So, suppose S is the range of the partial computable function ϕe. If S is
empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal
form theorem, we can write

ϕe(x) = U(µs T (e, x, s)).

In particular, ϕe(x) ↓ and = y if and only if there is an s such that T (e, x, s)
and U(s) = y. Define f(z) by

f(z) =

{
U((z)1) if T (e, (z)0, (z)1)

a otherwise.

Then f is primitive recursive, because T and U are. Expressed in terms of
Turing machines, if z codes a pair 〈(z)0, (z)1〉 such that (z)1 is a halting com-
putation of machine e on input (z)0, then f returns the output of the compu-
tation; otherwise, it returns a.We need to show that S is the range of f , i.e.,
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for any natural number y, y ∈ S if and only if it is in the range of f . In the
forwards direction, suppose y ∈ S. Then y is in the range of ϕe, so for some
x and s, T (e, x, s) and U(s) = y; but then y = f(〈x, s〉). Conversely, suppose
y is in the range of f . Then either y = a, or for some z, T (e, (z)0, (z)1) and
U((z)1) = y. Since, in the latter case, ϕe(x) ↓= y, either way, y is in S.

(The notation ϕe(x) ↓= y means “ϕe(x) is defined and equal to y.” We
could just as well use ϕe(x) = y, but the extra arrow is sometimes helpful in
reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem 3.9, it suffices to show that (1) and (4)
are equivalent. First, let us show that (1) implies (4). Suppose S is the range
of a computable function f , i.e.,

S = {y : for some x,f(x) = y}.

Let
g(y) = µx f(x) = y.

Then g is a partial computable function, and g(y) is defined if and only if for
some x, f(x) = y. In other words, the domain of g is the range of f . Expressed
in terms of Turing machines: given a Turing machine F that enumerates the
elements of S, let G be the Turing machine that semi-decides S by searching
through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial
computable function ϕe, i.e.,

S = {x : ϕe(x) ↓}.

If S is empty, we are done; otherwise, let a be any element of S. Define f by

f(z) =

{
(z)0 if T (e, (z)0, (z)1)

a otherwise.

Then, as above, a number x is in the range of f if and only if ϕe(x) ↓, i.e., if and
only if x ∈ S. Expressed in terms of Turing machines: given a machine Me that
semi-decides S, enumerate the elements of S by running through all possible
Turing machine computations, and returning the inputs that correspond to
halting computations.

The fourth clause of Theorem 3.9 provides us with a convenient way of
enumerating the computably enumerable sets: for each e, let We denote the
domain of ϕe. Then if A is any computably enumerable set, A = We, for some
e.

The following provides yet another characterization of the computably enu-
merable sets.

Theorem 3.10.cmp:thy:eqc:

thm:exists-char

A set S is computably enumerable if and only if there is a
computable relation R(x, y) such that

S = {x : ∃y R(x, y)}.
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Proof. In the forward direction, suppose S is computably enumerable. Then
for some e, S = We. For this value of e we can write S as

S = {x : ∃y T (e, x, y)}.

In the reverse direction, suppose S = {x : ∃y R(x, y)}. Define f by

f(x) ' µy AtomRx, y.

Then f is partial computable, and S is the domain of f .

3.12 Computably Enumerable Sets are Closed under
Union and Intersection

cmp:thy:clo:
sec

The following theorem gives some closure properties on the set of com-
putably enumerable sets.

Theorem 3.11. Suppose A and B are computably enumerable. Then so are
A ∩B and A ∪B.

Proof. Theorem 3.9 allows us to use various characterizations of the com-
putably enumerable sets. By way of illustration, we will provide a few different
proofs.

For the first proof, suppose A is enumerated by a computable function f ,
and B is enumerated by a computable function g. Let

h(x) = µy (f(y) = x ∨ g(y) = x) and

j(x) = µy (f((y)0) = x ∧ g((y)1) = x).

Then A ∪B is the domain of h, and A ∩B is the domain of j.
explanation Here is what is going on, in computational terms: given procedures that

enumerate A and B, we can semi-decide if an element x is in A∪B by looking
for x in either enumeration; and we can semi-decide if an element x is in A∩B
for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is
enumerated by g. Let

k(x) =

{
f(x/2) if x is even

g((x− 1)/2) if x is odd.

Then k enumerates A ∪ B; the idea is that k just alternates between the enu-
merations offered by f and g. Enumerating A∩B is tricker. If A∩B is empty,
it is trivially computably enumerable. Otherwise, let c be any element of A∩B,
and define l by

l(x) =

{
f((x)0) if f((x)0) = g((x)1)

c otherwise.
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In computational terms, l runs through pairs of elements in the enumerations of
f and g, and outputs every match it finds; otherwise, it just stalls by outputting
c.

For the last proof, suppose A is the domain of the partial function m(x)
and B is the domain of the partial function n(x). Then A ∩ B is the domain
of the partial function m(x) + n(x).

explanationIn computational terms, if A is the set of values for which m halts and B
is the set of values for which n halts, A ∩B is the set of values for which both
procedures halt.

Expressing A ∪ B as a set of halting values is more difficult, because one
has to simulate m and n in parallel. Let d be an index for m and let e be an
index for n; in other words, m = ϕd and n = ϕe. Then A∪B is the domain of
the function

p(x) = µy (T (d, x, y) ∨ T (e, x, y)).

explanationIn computational terms, on input x, p searches for either a halting compu-
tation for m or a halting computation for n, and halts if it finds either one.

3.13 Computably Enumerable Sets not Closed under
Complement

cmp:thy:cmp:
sec

Suppose A is computably enumerable. Is the complement of A, A = N \
A, necessarily computably enumerable as well? The following theorem and
corollary show that the answer is “no.”

Theorem 3.12.cmp:thy:cmp:

thm:ce-comp

Let A be any set of natural numbers. Then A is computable

if and only if both A and A are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then A is computable
as well (χA = 1 −̇ χA), and so both are computably enumerable.

In the other direction, suppose A and A are both computably enumerable.
Let A be the domain of ϕd, and let A be the domain of ϕe. Define h by

h(x) = µs (T (d, x, s) ∨ T (e, x, s)).

In other words, on input x, h searches for either a halting computation of ϕd
or a halting computation of ϕe. Now, if x ∈ A, it will succeed in the first case,
and if x ∈ A, it will succeed in the second case. So, h is a total computable
function. But now we have that for every x, x ∈ A if and only if T (e, x, h(x)),
i.e., if ϕe is the one that is defined. Since T (e, x, h(x)) is a computable relation,
A is computable.

explanationIt is easier to understand what is going on in informal computational terms:
to decide A, on input x search for halting computations of ϕe and ϕf . One of
them is bound to halt; if it is ϕe, then x is in A, and otherwise, x is in A.

Corollary 3.13.cmp:thy:cmp:

cor:comp-k

K0 is not computably enumerable.
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Proof. We know that K0 is computably enumerable, but not computable. If K0

were computably enumerable, then K0 would be computable by Theorem 3.12.

3.14 Reducibility

cmp:thy:red:
sec

explanation We now know that there is at least one set, K0, that is computably enu-
merable but not computable. It should be clear that there are others. The
method of reducibility provides a powerful method of showing that other sets
have these properties, without constantly having to return to first principles.

Generally speaking, a “reduction” of a set A to a set B is a method of
transforming answers to whether or not elements are in B into answers as to
whether or not elements are in A. We will focus on a notion called “many-
one reducibility,” but there are many other notions of reducibility available,
with varying properties. Notions of reducibility are also central to the study
of computational complexity, where efficiency issues have to be considered as
well. For example, a set is said to be “NP-complete” if it is in NP and every
NP problem can be reduced to it, using a notion of reduction that is similar to
the one described below, only with the added requirement that the reduction
can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

K = {x : ϕx(x) ↓},

i.e., K = {x : x ∈ Wx}. Our proof that the halting problem in unsolvable,
Theorem 3.6, shows most directly that K is not computable. Recall that K0

is the set
K0 = {〈e, x〉 : ϕe(x) ↓}.

i.e. K0 = {〈x, e〉 : x ∈We}. It is easy to extend any proof of the uncomputabil-
ity of K to the uncomputability of K0: if K0 were computable, we could decide
whether or not an element x is in K simply by asking whether or not the pair
〈x, x〉 is in K0. The function f which maps x to 〈x, x〉 is an example of a
reduction of K to K0.

Definition 3.14. Let A andB be sets. Then A is said to be many-one reducible
to B, written A ≤m B, if there is a computable function f such that for every
natural number x,

x ∈ A if and only if f(x) ∈ B.

If A is many-one reducible to B and vice-versa, then A and B are said to be
many-one equivalent, written A ≡m B.

If the function f in the definition above happens to be injective, A is said
to be one-one reducible to B. Most of the reductions described below meet
this stronger requirement, but we will not use this fact.

digression
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It is true, but by no means obvious, that one-one reducibility really is a
stronger requirement than many-one reducibility. In other words, there are
infinite sets A and B such that A is many-one reducible to B but not one-one
reducible to B.

3.15 Properties of Reducibility

cmp:thy:ppr:
sec

The intuition behind writing A ≤m B is that A is “no harder than” B. The
following two propositions support this intuition.

Proposition 3.15.cmp:thy:ppr:

prop:trans-red

If A ≤m B and B ≤m C, then A ≤m C.

Proof. Composing a reduction of A to B with a reduction of B to C yields a
reduction of A to C. (You should check the details!)

Proposition 3.16.cmp:thy:ppr:

prop:reduce

Let A and B be any sets, and suppose A is many-one
reducible to B.

1. If B is computably enumerable, so is A.

2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just
check that if B is the domain of a partial function g, then A is the domain
of g ◦ f :

x ∈ Aiff f(x) ∈ B
iff g(f(x)) ↓ .

For the second claim, remember that if B is computable then B and B
are computably enumerable. It is not hard to check that f is also a many-one
reduction of A to B, so, by the first part of this proof, A and A are computably
enumerable. So A is computable as well. (Alternatively, you can check that
χA = χB ◦ f ; so if χB is computable, then so is χA.)

digressionA more general notion of reducibility called Turing reducibility is useful
in other contexts, especially for proving undecidability results. Note that by
Corollary 3.13, the complement of K0 is not reducible to K0, since it is not
computably enumerable. But, intuitively, if you knew the answers to questions
about K0, you would know the answer to questions about its complement as
well. A set A is said to be Turing reducible to B if one can determine answers to
questions in A using a computable procedure that can ask questions about B.
This is more liberal than many-one reducibility, in which (1) you are only
allowed to ask one question about B, and (2) a “yes” answer has to translate
to a “yes” answer to the question about A, and similarly for “no.” It is still
the case that if A is Turing reducible to B and B is computable then A is
computable as well (though, as we have seen, the analogous statement does
not hold for computable enumerability).
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You should think about the various notions of reducibility we have dis-
cussed, and understand the distinctions between them. We will, however, only
deal with many-one reducibility in this chapter. Incidentally, both types of
reducibility discussed in the last paragraph have analogues in computational
complexity, with the added requirement that the Turing machines run in poly-
nomial time: the complexity version of many-one reducibility is known as Karp
reducibility, while the complexity version of Turing reducibility is known as
Cook reducibility.

3.16 Complete Computably Enumerable Sets

cmp:thy:cce:
sec

Definition 3.17. A set A is a complete computably enumerable set (under
many-one reducibility) if

1. A is computably enumerable, and

2. for any other computably enumerable set B, B ≤m A.

In other words, complete computably enumerable sets are the “hardest”
computably enumerable sets possible; they allow one to answer questions about
any computably enumerable set.

Theorem 3.18. K, K0, and K1 are all complete computably enumerable sets.

Proof. To see that K0 is complete, let B be any computably enumerable set.
Then for some index e,

B = We = {x : ϕe(x) ↓}.

Let f be the function f(x) = 〈e, x〉. Then for every natural number x, x ∈ B
if and only if f(x) ∈ K0. In other words, f reduces B to K0.

To see that K1 is complete, note that in the proof of Proposition 3.19 we
reduced K0 to it. So, by Proposition 3.15, any computably enumerable set can
be reduced to K1 as well.

K can be reduced to K0 in much the same way.

Problem 3.1. Give a reduction of K to K0.

digression So, it turns out that all the examples of computably enumerable sets that
we have considered so far are either computable, or complete. This should
seem strange! Are there any examples of computably enumerable sets that
are neither computable nor complete? The answer is yes, but it wasn’t until
the middle of the 1950s that this was established by Friedberg and Muchnik,
independently.
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3.17 An Example of Reducibility

cmp:thy:k1:
sec

Let us consider an application of Proposition 3.16.

Proposition 3.19.cmp:thy:k1:

prop:k1

Let

K1 = {e : ϕe(0) ↓}.

Then K1 is computably enumerable but not computable.

Proof. Since K1 = {e : ∃s T (e, 0, s)}, K1 is computably enumerable by Theo-
rem 3.10.

To show that K1 is not computable, let us show that K0 is reducible to it.
explanationThis is a little bit tricky, since using K1 we can only ask questions about

computations that start with a particular input, 0. Suppose you have a smart
friend who can answer questions of this type (friends like this are known as
“oracles”). Then suppose someone comes up to you and asks you whether or
not 〈e, x〉 is in K0, that is, whether or not machine e halts on input x. One
thing you can do is build another machine, ex, that, for any input, ignores that
input and instead runs e on input x. Then clearly the question as to whether
machine e halts on input x is equivalent to the question as to whether machine
ex halts on input 0 (or any other input). So, then you ask your friend whether
this new machine, ex, halts on input 0; your friend’s answer to the modified
question provides the answer to the original one. This provides the desired
reduction of K0 to K1.

Using the universal partial computable function, let f be the 3-ary function
defined by

f(x, y, z) ' ϕx(y).

Note that f ignores its third input entirely. Pick an index e such that f = ϕ3
e;

so we have

ϕ3
e(x, y, z) ' ϕx(y).

By the s-m-n theorem, there is a function s(e, x, y) such that, for every z,

ϕs(e,x,y)(z) ' ϕ3
e(x, y, z)

' ϕx(y).

explanationIn terms of the informal argument above, s(e, x, y) is an index for the ma-
chine that, for any input z, ignores that input and computes ϕx(y).

In particular, we have

ϕs(e,x,y)(0) ↓ if and only if ϕx(y) ↓ .

In other words, 〈x, y〉 ∈ K0 if and only if s(e, x, y) ∈ K1. So the function g
defined by

g(w) = s(e, (w)0, (w)1)

is a reduction of K0 to K1.
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3.18 Totality is Undecidable

cmp:thy:tot:
sec

Let us consider one more example of using the s-m-n theorem to show that
something is noncomputable. Let Tot be the set of indices of total computable
functions, i.e.

Tot = {x : for every y, ϕx(y) ↓}.

Proposition 3.20. cmp:thy:tot:

prop:total

Tot is not computable.

Proof. To see that Tot is not computable, it suffices to show that K is reducible
to it. Let h(x, y) be defined by

h(x, y) '

{
0 if x ∈ K
undefined otherwise

Note that h(x, y) does not depend on y at all. It should not be hard to see that
h is partial computable: on input x, y, the we compute h by first simulating
the function ϕx on input x; if this computation halts, h(x, y) outputs 0 and
halts. So h(x, y) is just Z(µs T (x, x, s)), where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function k(x) such
that for every x and y,

ϕk(x)(y) =

{
0 if x ∈ K
undefined otherwise

So ϕk(x) is total if x ∈ K, and undefined otherwise. Thus, k is a reduction of
K to Tot.

digression It turns out that Tot is not even computably enumerable—its complexity
lies further up on the “arithmetic hierarchy.” But we will not worry about this
strengthening here.

3.19 Rice’s Theorem

cmp:thy:rce:
sec

If you think about it, you will see that the specifics of Tot do not play into
the proof of Proposition 3.20. We designed h(x, y) to act like the constant
function j(y) = 0 exactly when x is in K; but we could just as well have made
it act like any other partial computable function under those circumstances.
This observation lets us state a more general theorem, which says, roughly,
that no nontrivial property of computable functions is decidable.

Keep in mind that ϕ0, ϕ1, ϕ2, . . . is our standard enumeration of the partial
computable functions.

Theorem 3.21 (Rice’s Theorem). Let C be any set of partial computable
functions, and let A = {n : ϕn ∈ C}. If A is computable, then either C is ∅ or
C is the set of all the partial computable functions.
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An index set is a set A with the property that if n and m are indices which
“compute” the same function, then either both n and m are in A, or neither is.
It is not hard to see that the set A in the theorem has this property. Conversely,
if A is an index set and C is the set of functions computed by these indices,
then A = {n : ϕn ∈ C}.

explanationWith this terminology, Rice’s theorem is equivalent to saying that no non-
trivial index set is decidable. To understand what the theorem says, it is helpful
to emphasize the distinction between programs (say, in your favorite program-
ming language) and the functions they compute. There are certainly questions
about programs (indices), which are syntactic objects, that are computable:
does this program have more than 150 symbols? Does it have more than 22
lines? Does it have a “while” statement? Does the string “hello world” every
appear in the argument to a “print” statement? Rice’s theorem says that no
nontrivial question about the program’s behavior is computable. This includes
questions like these: does the program halt on input 0? Does it ever halt?
Does it ever output an even number?

Proof of Rice’s theorem. Suppose C is neither ∅ nor the set of all the partial
computable functions, and let A be the set of indices of functions in C. We
will show that if A were computable, we could solve the halting problem; so
A is not computable.

Without loss of generality, we can assume that the function f which is
nowhere defined is not in C (otherwise, switch C and its complement in the
argument below). Let g be any function in C. The idea is that if we could
decide A, we could tell the difference between indices computing f , and in-
dices computing g; and then we could use that capability to solve the halting
problem.

Here’s how. Using the universal computation predicate, we can define a
function

h(x, y) '

{
undefined if ϕx(x) ↑
g(y) otherwise.

To compute h, first we try to compute ϕx(x); if that computation halts, we
go on to compute g(y); and if that computation halts, we return the output.
More formally, we can write

h(x, y) ' P 2
0 (g(y),Un(x, x)).

where P 2
0 (z0, z1) = z0 is the 2-place projection function returning the 0-th

argument, which is computable.
Then h is a composition of partial computable functions, and the right side

is defined and equal to g(y) just when Un(x, x) and g(y) are both defined.
Notice that for a fixed x, if ϕx(x) is undefined, then h(x, y) is undefined for

every y; and if ϕx(x) is defined, then h(x, y) ' g(y). So, for any fixed value
of x, either h(x, y) acts just like f or it acts just like g, and deciding whether or
not ϕx(x) is defined amounts to deciding which of these two cases holds. But
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this amounts to deciding whether or not hx(y) ' h(x, y) is in C or not, and if
A were computable, we could do just that.

More formally, since h is partial computable, it is equal to the function ϕk
for some index k. By the s-m-n theorem there is a primitive recursive function
s such that for each x, ϕs(k,x)(y) = hx(y). Now we have that for each x, if
ϕx(x) ↓, then ϕs(k,x) is the same function as g, and so s(k, x) is in A. On the
other hand, if ϕx(x) ↑, then ϕs(k,x) is the same function as f , and so s(k, x)
is not in A. In other words we have that for every x, x ∈ K if and only if
s(k, x) ∈ A. If A were computable, K would be also, which is a contradiction.
So A is not computable.

Rice’s theorem is very powerful. The following immediate corollary shows
some sample applications.

Corollary 3.22. The following sets are undecidable.

1. {x : 17 is in the range of ϕx}

2. {x : ϕx is constant}

3. {x : ϕx is total}

4. {x : whenever y < y′, ϕx(y) ↓, and if ϕx(y′) ↓, then ϕx(y) < ϕx(y′)}

Proof. These are all nontrivial index sets.

3.20 The Fixed-Point Theorem

cmp:thy:fix:
sec

Let’s consider the halting problem again. As temporary notation, let us
write pϕx(y)q for 〈x, y〉; think of this as representing a “name” for the value
ϕx(y). With this notation, we can reword one of our proofs that the halting
problem is undecidable.

Question: is there a computable function h, with the following property?
For every x and y,

h(pϕx(y)q) =

{
1 if ϕx(y) ↓
0 otherwise.

Answer: No; otherwise, the partial function

g(x) '

{
0 if h(pϕx(x)q) = 0

undefined otherwise

would be computable, and so have some index e. But then we have

ϕe(e) '

{
0 if h(pϕe(e)q) = 0

undefined otherwise,

in which case ϕe(e) is defined if and only if it isn’t, a contradiction.
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Now, take a look at the equation with ϕe. There is an instance of self-
reference there, in a sense: we have arranged for the value of ϕe(e) to depend
on pϕe(e)q, in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma 3.23 gives two equivalent ways of stating the fixed-point theorem.
Logically speaking, the fact that the statements are equivalent follows from the
fact that they are both true; but what we really mean is that each one follows
straightforwardly from the other, so that they can be taken as alternative
statements of the same theorem.

Lemma 3.23.cmp:thy:fix:

lem:fixed-equiv

The following statements are equivalent:

1. For every partial computable function g(x, y), there is an index e such
that for every y,

ϕe(y) ' g(e, y).

2. For every computable function f(x), there is an index e such that for
every y,

ϕe(y) ' ϕf(e)(y).

Proof. (1) ⇒ (2): Given f , define g by g(x, y) ' Un(f(x), y). Use (1) to get
an index e such that for every y,

ϕe(y) = Un(f(e), y)

= ϕf(e)(y).

(2) ⇒ (1): Given g, use the s-m-n theorem to get f such that for every x
and y, ϕf(x)(y) ' g(x, y). Use (2) to get an index e such that

ϕe(y) = ϕf(e)(y)

= g(e, y).

This concludes the proof.

explanationBefore showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x, y), you can find a computer program
e that computes ge(y) ' g(e, y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem 3.24. The two statements in Lemma 3.23 are true. Specifically,
for every partial computable function g(x, y), there is an index e such that for
every y,

ϕe(y) ' g(e, y).

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x returns
an index for the function fx(y) ' ϕx(x, y), i.e.

ϕdiag(x)(y) ' ϕx(x, y).
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Think of diag as a function that transforms a program for a 2-ary function
into a program for a 1-ary function, obtained by fixing the original program as
its first argument. The function diag can be defined formally as follows: first
define s by

s(x, y) ' Un2(x, x, y),

where Un2 is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive
function diag satisfying

ϕdiag(x)(y) ' s(x, y).

Now, define the function l by

l(x, y) ' g(diag(x), y).

and let plq be an index for l. Finally, let e = diag(plq). Then for every y, we
have

ϕe(y) ' ϕ
diag(plq)(y)

' ϕplq(plq, y)

' l(plq, y)

' g(diag(plq), y)

' g(e, y),

as required.

explanation What’s going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string functions.
In particular, suppose your programming language has a function diag which
works as follows: given an input string s, diag locates each instance of the
symbol ‘x’ occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world

as input, the function returns

hello ’hello x world’ world

as output. In that case, it is easy to write the desired program; you can check
that

print(diag(’print(diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”
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getinput(y); print(diag(’getinput(y); print(diag(x), y)’), y)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x, y) yields

g(diag(’g(diag(x), y)’), y)

which is a program that, on input y, runs g on the program itself and y.
Thinking of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

digressionThe same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is β-equivalent to gk. Define terms

diag(x) = xx

and

l(x) = g(diag(x))

using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes

Y = λg. ((λx. g(xx))(λx. g(xx)))

then Y g and g(Y g) reduce to a common term; so Y g ≡β g(Y g). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Y g reduces to g(Y g), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

3.21 Applying the Fixed-Point Theorem

cmp:thy:apf:
sec

The fixed-point theorem essentially lets us define partial computable func-
tions in terms of their indices. For example, we can find an index e such that
for every y,

ϕe(y) = e+ y.
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As another example, one can use the proof of the fixed-point theorem to design
a program in Java or C++ that prints itself out.

Remember that if for each e, we let We be the domain of ϕe, then the
sequence W0, W1, W2, . . . enumerates the computably enumerable sets. Some
of these sets are computable. One can ask if there is an algorithm which takes
as input a value x, and, if Wx happens to be computable, returns an index for
its characteristic function. The answer is “no,” there is no such algorithm:

Theorem 3.25. There is no partial computable function f with the following
property: whenever We is computable, then f(e) is defined and ϕf(e) is its
characteristic function.

Proof. Let f be any computable function; we will construct an e such that We

is computable, but ϕf(e) is not its characteristic function. Using the fixed point
theorem, we can find an index e such that

ϕe(y) '

{
0 if y = 0 and ϕf(e)(0) ↓= 0

undefined otherwise.

That is, e is obtained by applying the fixed-point theorem to the function
defined by

g(x, y) '

{
0 if y = 0 and ϕf(x)(0) ↓= 0

undefined otherwise.

Informally, we can see that g is partial computable, as follows: on input x and
y, the algorithm first checks to see if y is equal to 0. If it is, the algorithm
computes f(x), and then uses the universal machine to compute ϕf(x)(0). If
this last computation halts and returns 0, the algorithm returns 0; otherwise,
the algorithm doesn’t halt.

But now notice that if ϕf(e)(0) is defined and equal to 0, then ϕe(y) is
defined exactly when y is equal to 0, so We = {0}. If ϕf(e)(0) is not defined,
or is defined but not equal to 0, then We = ∅. Either way, ϕf(e) is not the
characteristic function of We, since it gives the wrong answer on input 0.

3.22 Defining Functions using Self-Reference

cmp:thy:slf:
sec

It is generally useful to be able to define functions in terms of themselves.
For example, given computable functions k, l, and m, the fixed-point lemma
tells us that there is a partial computable function f satisfying the following
equation for every y:

f(y) '

{
k(y) if l(y) = 0

f(m(y)) otherwise.
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Again, more specifically, f is obtained by letting

g(x, y) '

{
k(y) if l(y) = 0

ϕx(m(y)) otherwise

and then using the fixed-point lemma to find an index e such that ϕe(y) =
g(e, y).

For a concrete example, the “greatest common divisor” function gcd(u, v)
can be defined by

gcd(u, v) '

{
v if 0 = 0

gcd(mod(v, u), u) otherwise

where mod(v, u) denotes the remainder of dividing v by u. An appeal to the
fixed-point lemma shows that gcd is partial computable. (In fact, this can be
put in the format above, letting y code the pair 〈u, v〉.) A subsequent induction
on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier
than the examples just discussed. Most programming languages support def-
initions of functions in terms of themselves, one way or another. Note that
this is a little bit less dramatic than being able to define a function in terms
of an index for an algorithm computing the functions, which is what, in full
generality, the fixed-point theorem lets you do.

3.23 Minimization with Lambda Terms

cmp:thy:mla:
sec

When it comes to the lambda calculus, we’ve shown the following:

1. Every primitive recursive function is represented by a lambda term.

2. There is a lambda term Y such that for any lambda term G, Y G.G(Y G).

To show that every partial computable function is represented by some lambda
term, we only need to show the following.

Lemma 3.26. Suppose f(x, y) is primitive recursive. Let g be defined by

g(x) ' µy f(x, y) = 0.

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) '

{
n if f(x, n) = 0

hx(n+ 1) otherwise.
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Here are the details. Since f is primitive recursive, it is represented by some
term F . Remember that we also have a lambda term D such that D(M,N, 0).
M and D(M,N, 1) . N . Fixing x for the moment, to represent hx we want to
find a term H (depending on x) satisfying

H(n) ≡ D(n,H(S(n)), F (x, n)).

We can do this using the fixed-point term Y . First, let U be the term

λh. λz.D(z, (h(Sz)), F (x, z)),

and then let H be the term Y U . Notice that the only free variable in H is x.
Let us show that H satisfies the equation above.

By the definition of Y , we have

H = Y U ≡ U(Y U) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H,n)

. D(n,H(S(n)), F (x, n)),

as required. Notice that if you substitute a numeral m for x in the last line,
the expression reduces to n if F (m,n) reduces to 0, and it reduces to H(S(n))
if F (m,n) reduces to any other numeral.

To finish off the proof, let G be λx.H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.
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