Let us consider one more example of using the s-m-n theorem to show that something is noncomputable. Let Tot be the set of indices of total computable functions, i.e.

$$\text{Tot} = \{x : \text{for every } y, \varphi_x(y) \downarrow\}.$$

Proposition thy.1. Tot is not computable.

Proof. To see that Tot is not computable, it suffices to show that K is reducible to it. Let $h(x, y)$ be defined by

$$h(x, y) \simeq \begin{cases}
0 & \text{if } x \in K \\
\text{undefined} & \text{otherwise}
\end{cases}$$

Note that $h(x, y)$ does not depend on y at all. It should not be hard to see that h is partial computable: on input x, y, the we compute h by first simulating the function φ_x on input x; if this computation halts, $h(x, y)$ outputs 0 and halts. So $h(x, y)$ is just $Z(\mu s T(x, x, s))$, where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function $k(x)$ such that for every x and y,

$$\varphi_{k(x)}(y) = \begin{cases}
0 & \text{if } x \in K \\
\text{undefined} & \text{otherwise}
\end{cases}$$

So $\varphi_{k(x)}$ is total if $x \in K$, and undefined otherwise. Thus, k is a reduction of K to Tot.

It turns out that Tot is not even computably enumerable—its complexity lies further up on the “arithmetic hierarchy.” But we will not worry about this strengthening here.

Photo Credits

Bibliography