The next theorem is known as the “s-m-n theorem,” for a reason that will be clear in a moment. The hard part is understanding just what the theorem says; once you understand the statement, it will seem fairly obvious.

Theorem thy.1. For each pair of natural numbers n and m, there is a primitive recursive function s^m_n such that for every sequence $x, a_0, \ldots, a_{m-1}, y_0, \ldots, y_{n-1}$, we have

$$\varphi^n_{s^m_n(x, a_0, \ldots, a_{m-1})}(y_0, \ldots, y_{n-1}) \simeq \varphi^{m+n}_x(a_0, \ldots, a_{m-1}, y_0, \ldots, y_{n-1}).$$

It is helpful to think of s^m_n as acting on *programs*. That is, s^m_n takes a program, x, for an $(m + n)$-ary function, as well as fixed inputs a_0, \ldots, a_{m-1}; and it returns a program, $s^m_n(x, a_0, \ldots, a_{m-1})$, for the n-ary function of the remaining arguments. It you think of x as the description of a Turing machine, then $s^m_n(x, a_0, \ldots, a_{m-1})$ is the Turing machine that, on input y_0, \ldots, y_{n-1}, prepends a_0, \ldots, a_{m-1} to the input string, and runs x. Each s^m_n is then just a primitive recursive function that finds a code for the appropriate Turing machine.