Theorem thy.1 (Kleene’s Normal Form Theorem). There are a primitive recursive relation \(T(k, x, s) \) and a primitive recursive function \(U(s) \), with the following property: if \(f \) is any partial computable function, then for some \(k \),

\[
f(x) \simeq U(\mu s \ T(k, x, s))
\]

for every \(x \).

Proof Sketch. For any model of computation one can rigorously define a description of the computable function \(f \) and code such description using a natural number \(k \). One can also rigorously define a notion of “computation sequence” which records the process of computing the function with index \(k \) for input \(x \). These computation sequences can likewise be coded as numbers \(s \). This can be done in such a way that (a) it is decidable whether a number \(s \) codes the computation sequence of the function with index \(k \) on input \(x \) and (b) what the end result of the computation sequence coded by \(s \) is. In fact, the relation in (a) and the function in (b) are primitive recursive.

In order to give a rigorous proof of the Normal Form Theorem, we would have to fix a model of computation and carry out the coding of descriptions of computable functions and of computation sequences in detail, and verify that the relation \(T \) and function \(U \) are primitive recursive. For most applications, it suffices that \(T \) and \(U \) are computable and that \(U \) is total.

It is probably best to remember the proof of the normal form theorem in slogan form: \(\mu s \ T(k, x, s) \) searches for a computation sequence of the function with index \(k \) on input \(x \), and \(U \) returns the output of the computation sequence if one can be found.

\(T \) and \(U \) can be used to define the enumeration \(\varphi_0, \varphi_1, \varphi_2, \ldots \). From now on, we will assume that we have fixed a suitable choice of \(T \) and \(U \), and take the equation

\[
\varphi_e(x) \simeq U(\mu s \ T(e, x, s))
\]

to be the definition of \(\varphi_e \).

Here is another useful fact:

Theorem thy.2. Every partial computable function has infinitely many indices.

Again, this is intuitively clear. Given any (description of) a computable function, one can come up with a different description which computes the same function (input-output pair) but does so, e.g., by first doing something that has no effect on the computation (say, test if \(0 = 0 \), or count to 5, etc.). The index of the altered description will always be different from the original index. Both are indices of the same function, just computed slightly differently.
Photo Credits

Bibliography