When it comes to the lambda calculus, we’ve shown the following:

1. Every primitive recursive function is represented by a lambda term.

2. There is a lambda term Y such that for any lambda term G, $YG \geq G(YG)$.

To show that every partial computable function is represented by some lambda term, we only need to show the following.

Lemma thy.1. Suppose $f(x, y)$ is primitive recursive. Let g be defined by $$g(x) \simeq \mu y \ f(x, y) = 0.$$ Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point lambda term Y to define a function $h_x(n)$ which searches for a y starting at n; then $g(x)$ is just $h_x(0)$. The function h_x can be expressed as the solution of a fixed-point equation:

$$h_x(n) \simeq \begin{cases} n & \text{if } f(x, n) = 0 \\ h_x(n + 1) & \text{otherwise.} \end{cases}$$

Here are the details. Since f is primitive recursive, it is represented by some term F. Remember that we also have a lambda term D such that $D(M, N, \overline{0}) \geq M$ and $D(M, N, \overline{1}) \geq N$. Fixing x for the moment, to represent h_x we want to find a term H (depending on x) satisfying

$$H(n) \equiv D(n, H(S(n)), F(x, n)).$$

We can do this using the fixed-point term Y. First, let U be the term

$$\lambda h. \lambda z. D(z, (h(Sz)), F(x, z)),$$

and then let H be the term YU. Notice that the only free variable in H is x.

Let us show that H satisfies the equation above.

By the definition of Y, we have

$$H = YU \equiv U(YU) = U(H).$$

In particular, for each natural number n, we have

$$H(n) \equiv U(H, n) \geq D(n, H(S(n)), F(x, n)),$$

as required. Notice that if you substitute a numeral \overline{m} for x in the last line, the expression reduces to n if $F(\overline{m}, n)$ reduces to $\overline{0}$, and it reduces to $H(S(n))$ if $F(\overline{m}, n)$ reduces to any other numeral.

To finish off the proof, let G be $\lambda x. H(\overline{0})$. Then G represents g; in other words, for every m, $G(\overline{m})$ reduces to reduces to $g(m)$, if $g(m)$ is defined, and has no normal form otherwise.
Photo Credits

Bibliography