cmp:thy:hlt:
sec

cmp:thy:hlt:
thm:halting-problem

thy.1 The Halting Problem

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input z, it is natural to ask
if we can decide whether this is the case. And in fact, it is not. For the
Turing machine model of computation, this means that whether a given Turing
machine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” I
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem thy.1. Let

h(k,z) = {1 if Un(k, ) is defined

0 otherwise.

Then h is not computable.

Proof. If h were computable, we would have a universal computable function,
as follows. Suppose h is computable, and define

{ fUn(k,z) if h(k,z) = 1

Un'(k,z) = _
0 otherwise.

But now Un’(k, z) is a total function, and is computable if h is. For instance,
we could define g using primitive recursion, by

9(0,k,z) ~0
gy +1,k,x) =~ Un(k,x);

then
Un'(k,z) ~ g(h(k,z), k, ).
And since Un'(k, z) agrees with Un(k, z) wherever the latter is defined, Un’ is

universal for those partial computable functions that happen to be total. But
this contradicts ?7. O

Proof. Suppose h(k,z) were computable. Define the function g by

o(e) = {0 if h(z,x) =0

undefined otherwise.

The function g is partial computable; for example, one can define it as py h(x, x)
0. So, for some k, g(x) ~ Un(k, z) for every x. Is g defined at k? If it is, then,
by the definition of g, h(k,k) = 0. By the definition of f, this means that
Un(k, k) is undefined; but by our assumption that g(k) ~ Un(k,x) for every
x, this means that g(k) is undefined, a contradiction. On the other hand, if
g(k) is undefined, then h(k, k) # 0, and so h(k,k) = 1. But this means that
Un(k, k) is defined, i.e., that g(k) is defined. O

halting-problem rev: ee4902c (2018-12-01) by OLP / CC-BY 1


https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

explanation

We can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words,
if H reports that x halts on input z, G goes into an infinite loop, and if H
reports that x doesn’t halt on input x, then G just halts. Does G halt on
input G? The argument above shows that it does if and only if it doesn’t—a
contradiction. So our supposition that there is a such Turing machine H, is
false.

Photo Credits

Bibliography



	The Halting Problem
	Photo Credits
	Bibliography

