
thy.1 The Fixed-Point Theorem

cmp:thy:fix:
sec

Let’s consider the halting problem again. As temporary notation, let us
write pϕx(y)q for 〈x, y〉; think of this as representing a “name” for the value
ϕx(y). With this notation, we can reword one of our proofs that the halting
problem is undecidable.

Question: is there a computable function h, with the following property?
For every x and y,

h(pϕx(y)q) =

{
1 if ϕx(y) ↓
0 otherwise.

Answer: No; otherwise, the partial function

g(x) '

{
0 if h(pϕx(x)q) = 0

undefined otherwise

would be computable, and so have some index e. But then we have

ϕe(e) '

{
0 if h(pϕe(e)q) = 0

undefined otherwise,

in which case ϕe(e) is defined if and only if it isn’t, a contradiction.
Now, take a look at the equation with ϕe. There is an instance of self-

reference there, in a sense: we have arranged for the value of ϕe(e) to depend
on pϕe(e)q, in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma thy.1 gives two equivalent ways of stating the fixed-point theorem.
Logically speaking, the fact that the statements are equivalent follows from the
fact that they are both true; but what we really mean is that each one follows
straightforwardly from the other, so that they can be taken as alternative
statements of the same theorem.

Lemma thy.1.cmp:thy:fix:

lem:fixed-equiv

The following statements are equivalent:

1. For every partial computable function g(x, y), there is an index e such
that for every y,

ϕe(y) ' g(e, y).

2. For every computable function f(x), there is an index e such that for
every y,

ϕe(y) ' ϕf(e)(y).

Proof. (1) ⇒ (2): Given f , define g by g(x, y) ' Un(f(x), y). Use (1) to get
an index e such that for every y,

ϕe(y) = Un(f(e), y)

= ϕf(e)(y).
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(2) ⇒ (1): Given g, use the s-m-n theorem to get f such that for every x
and y, ϕf(x)(y) ' g(x, y). Use (2) to get an index e such that

ϕe(y) = ϕf(e)(y)

= g(e, y).

This concludes the proof.

explanation Before showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x, y), you can find a computer program
e that computes ge(y) ' g(e, y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem thy.2. The two statements in Lemma thy.1 are true. Specifically,
for every partial computable function g(x, y), there is an index e such that for
every y,

ϕe(y) ' g(e, y).

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x returns
an index for the function fx(y) ' ϕx(x, y), i.e.

ϕdiag(x)(y) ' ϕx(x, y).

Think of diag as a function that transforms a program for a 2-ary function
into a program for a 1-ary function, obtained by fixing the original program as
its first argument. The function diag can be defined formally as follows: first
define s by

s(x, y) ' Un2(x, x, y),

where Un2 is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive
function diag satisfying

ϕdiag(x)(y) ' s(x, y).

Now, define the function l by

l(x, y) ' g(diag(x), y).

and let plq be an index for l. Finally, let e = diag(plq). Then for every y, we
have

ϕe(y) ' ϕ
diag(plq)(y)

' ϕplq(plq, y)

' l(plq, y)

' g(diag(plq), y)

' g(e, y),

as required.
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explanationWhat’s going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string functions.
In particular, suppose your programming language has a function diag which
works as follows: given an input string s, diag locates each instance of the
symbol ‘x’ occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world

as input, the function returns

hello ’hello x world’ world

as output. In that case, it is easy to write the desired program; you can check
that

print(diag(’print(diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”

getinput(y); print(diag(’getinput(y); print(diag(x), y)’), y)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x, y) yields

g(diag(’g(diag(x), y)’), y)

which is a program that, on input y, runs g on the program itself and y.
Thinking of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

digressionThe same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is β-equivalent to gk. Define terms

diag(x) = xx

and

l(x) = g(diag(x))
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using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes
Y = λg. ((λx. g(xx))(λx. g(xx)))

then Y g and g(Y g) reduce to a common term; so Y g ≡β g(Y g). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Y g reduces to g(Y g), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”
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