Theorem thy.1. Let S be a set of natural numbers. Then the following are equivalent:

1. S is computably enumerable.
2. S is the range of a partial computable function.
3. S is empty or the range of a primitive recursive function.
4. S is the domain of a partial computable function.

The first three clauses say that we can equivalently take any non-empty computably enumerable set to be enumerated by either a computable function, a partial computable function, or a primitive recursive function. The fourth clause tells us that if S is computably enumerable, then for some index e, $S = \{x : \varphi_e(x) \downarrow\}$.

In other words, S is the set of inputs on for which the computation of φ_e halts. For that reason, computably enumerable sets are sometimes called semi-decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t, you never get a “no”!

Proof. Since every primitive recursive function is computable and every computable function is partial computable, (3) implies (1) and (1) implies (2). (Note that if S is empty, S is the range of the partial computable function that is nowhere defined.) If we show that (2) implies (3), we will have shown the first three clauses equivalent.

So, suppose S is the range of the partial computable function φ_e. If S is empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal form theorem, we can write

$$\varphi_e(x) = U(\mu s T(e, x, s)).$$

In particular, $\varphi_e(x) \downarrow$ and $= y$ if and only if there is an s such that $T(e, x, s)$ and $U(s) = y$. Define $f(z)$ by

$$f(z) = \begin{cases} U((z)1) & \text{if } T(e, (z)0, (z)1) \\ a & \text{otherwise.} \end{cases}$$

Then f is primitive recursive, because T and U are. Expressed in terms of Turing machines, if z codes a pair $((z)0, (z)1)$ such that $(z)1$ is a halting computation of machine e on input $(z)0$, then f returns the output of the computation; otherwise, it returns a. We need to show that S is the range of f, i.e.,
for any natural number \(y \), \(y \in S \) if and only if it is in the range of \(f \). In the forwards direction, suppose \(y \in S \). Then \(y \) is in the range of \(\varphi_e \), so for some \(x \) and \(s \), \(T(e, x, s) \) and \(U(s) = y \); but then \(y = f((x, s)) \). Conversely, suppose \(y \) is in the range of \(f \). Then either \(y = a \), or for some \(z \), \(T(e, (z)_0, (z)_1) \) and \(U((z)_1) = y \). Since, in the latter case, \(\varphi_e(x) \Downarrow \) \(y \), either way, \(y \) is in \(S \).

(The notation \(\varphi_e(x) \Downarrow = y \) means “\(\varphi_e(x) \) is defined and equal to \(y \).” We could just as well use \(\varphi_e(x) = y \), but the extra arrow is sometimes helpful in reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem thy.1, it suffices to show that (1) and (4) are equivalent. First, let us show that (1) implies (4). Suppose \(S \) is the range of a computable function \(f \), i.e.,

\[
S = \{ y : \text{for some } x, f(x) = y \}.
\]

Let

\[
g(y) = \mu x \ f(x) = y.
\]

Then \(g \) is a partial computable function, and \(g(y) \) is defined if and only if for some \(x \), \(f(x) = y \). In other words, the domain of \(g \) is the range of \(f \). Expressed in terms of Turing machines: given a Turing machine \(F \) that enumerates the elements of \(S \), let \(G \) be the Turing machine that semi-decides \(S \) by searching through the outputs of \(F \) to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that \(S \) is the domain of the partial computable function \(\varphi_e \), i.e.,

\[
S = \{ x : \varphi_e(x) \Downarrow \}.
\]

If \(S \) is empty, we are done; otherwise, let \(a \) be any element of \(S \). Define \(f \) by

\[
f(z) = \begin{cases}
(z)_0 & \text{if } T(e, (z)_0, (z)_1) \\
 a & \text{otherwise.}
\end{cases}
\]

Then, as above, a number \(x \) is in the range of \(f \) if and only if \(\varphi_e(x) \Downarrow \), i.e., if and only if \(x \in S \). Expressed in terms of Turing machines: given a machine \(M_e \) that semi-decides \(S \), enumerate the elements of \(S \) by running through all possible Turing machine computations, and returning the inputs that correspond to halting computations.

The fourth clause of Theorem thy.1 provides us with a convenient way of enumerating the computably enumerable sets: for each \(e \), let \(W_e \) denote the domain of \(\varphi_e \). Then if \(A \) is any computably enumerable set, \(A = W_e \), for some \(e \).

The following provides yet another characterization of the computably enumerable sets.

Theorem thy.2. A set \(S \) is computably enumerable if and only if there is a computable relation \(R(x, y) \) such that

\[
S = \{ x : \exists y R(x, y) \}.
\]
Proof. In the forward direction, suppose S is computably enumerable. Then for some e, $S = W_e$. For this value of e we can write S as

$$S = \{ x : \exists y T(e, x, y) \}.$$

In the reverse direction, suppose $S = \{ x : \exists y R(x, y) \}$. Define f by

$$f(x) \simeq \mu y \text{AtomRx}, y.$$

Then f is partial computable, and S is the domain of f. \hfill \Box

Photo Credits

Bibliography