Defining Functions using Self-Reference

It is generally useful to be able to define functions in terms of themselves. For example, given computable functions k, l, and m, the fixed-point lemma tells us that there is a partial computable function f satisfying the following equation for every y:

\[
f(y) \simeq \begin{cases}
k(y) & \text{if } l(y) = 0 \\
f(m(y)) & \text{otherwise.}
\end{cases}
\]

Again, more specifically, f is obtained by letting

\[
g(x, y) \simeq \begin{cases}
k(y) & \text{if } l(y) = 0 \\
\varphi_{\beta}(m(y)) & \text{otherwise}
\end{cases}
\]

and then using the fixed-point lemma to find an index e such that $\varphi_{\beta}(y) = g(e, y)$.

For a concrete example, the “greatest common divisor” function $\text{gcd}(u, v)$ can be defined by

\[
\text{gcd}(u, v) \simeq \begin{cases}
v & \text{if } 0 = 0 \\
\text{gcd}(\text{mod}(v, u), u) & \text{otherwise}
\end{cases}
\]

where $\text{mod}(v, u)$ denotes the remainder of dividing v by u. An appeal to the fixed-point lemma shows that gcd is partial computable. (In fact, this can be put in the format above, letting y code the pair $\langle u, v \rangle$.) A subsequent induction on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier than the examples just discussed. Most programming languages support definitions of functions in terms of themselves, one way or another. Note that this is a little bit less dramatic than being able to define a function in terms of an index for an algorithm computing the functions, which is what, in full generality, the fixed-point theorem lets you do.

Photo Credits

Bibliography