It is generally useful to be able to define functions in terms of themselves. For example, given computable functions \(k \), \(l \), and \(m \), the fixed-point lemma tells us that there is a partial computable function \(f \) satisfying the following equation for every \(y \):

\[
 f(y) \simeq \begin{cases}
 k(y) & \text{if } l(y) = 0 \\
 f(m(y)) & \text{otherwise.}
\end{cases}
\]

Again, more specifically, \(f \) is obtained by letting

\[
 g(x, y) \simeq \begin{cases}
 k(y) & \text{if } l(y) = 0 \\
 \varphi_x(m(y)) & \text{otherwise}
\end{cases}
\]

and then using the fixed-point lemma to find an index \(e \) such that \(\varphi_e(y) = g(e, y) \).

For a concrete example, the “greatest common divisor” function \(\gcd(u, v) \) can be defined by

\[
 \gcd(u, v) \simeq \begin{cases}
 v & \text{if } 0 = 0 \\
 \gcd(\text{mod}(v, u), u) & \text{otherwise}
\end{cases}
\]

where \(\text{mod}(v, u) \) denotes the remainder of dividing \(v \) by \(u \). An appeal to the fixed-point lemma shows that \(\gcd \) is partial computable. (In fact, this can be put in the format above, letting \(y \) code the pair \(\langle u, v \rangle \).) A subsequent induction on \(u \) then shows that, in fact, \(\gcd \) is total.

Of course, one can cook up self-referential definitions that are much fancier than the examples just discussed. Most programming languages support definitions of functions in terms of themselves, one way or another. Note that this is a little bit less dramatic than being able to define a function in terms of an index for an algorithm computing the functions, which is what, in full generality, the fixed-point theorem lets you do.