We can extend the notion of computability from computable functions to computable sets:

Definition thy.1. Let S be a set of natural numbers. Then S is *computable* iff its characteristic function is. In other words, S is computable iff the function

$$
\chi_S(x) = \begin{cases}
1 & \text{if } x \in S \\
0 & \text{otherwise}
\end{cases}
$$

is computable. Similarly, a relation $R(x_0, \ldots, x_{k-1})$ is computable if and only if its characteristic function is.

Computable sets are also called *decidable*.

Notice that we now have a number of notions of computability: for partial functions, for functions, and for sets. Do not get them confused! The Turing machine computing a partial function returns the output of the function, for input values at which the function is defined; the Turing machine computing a set returns either 1 or 0, after deciding whether or not the input value is in the set or not.

Photo Credits

Bibliography