
Chapter udf

Computability Theory

Material in this chapter should be reviewed and expanded. In paticular,
there are no exercises yet.

thy.1 Introduction

cmp:thy:int:
sec

The branch of logic known as Computability Theory deals with issues having
to do with the computability, or relative computability, of functions and sets.
It is a evidence of Kleene’s influence that the subject used to be known as
Recursion Theory, and today, both names are commonly used.

Let us call a function f : N 7→ N partial computable if it can be computed
in some model of computation. If f is total we will simply say that f is
computable. A relation R with computable characteristic function χR is also
called computable. If f and g are partial functions, we will write f(x) ↓ to
mean that f is defined at x, i.e., x is in the domain of f ; and f(x) ↑ to mean
the opposite, i.e., that f is not defined at x. We will use f(x) ' g(x) to mean
that either f(x) and g(x) are both undefined, or they are both defined and
equal.

One can explore the subject without having to refer to a specific model
of computation. To do this, one shows that there is a universal partial com-
putable function, Un(k, x). This allows us to enumerate the partial computable
functions. We will adopt the notation ϕk to denote the k-th unary partial
computable function, defined by ϕk(x) ' Un(k, x). (Kleene used {k} for this
purpose, but this notation has not been used as much recently.) Slightly more
generally, we can uniformly enumerate the partial computable functions of ar-
bitrary arities, and we will use ϕnk to denote the k-th n-ary partial recursive
function.

Recall that if f(~x, y) is a total or partial function, then µy f(~x, y) is the
function of ~x that returns the least y such that f(~x, y) = 0, assuming that all of
f(~x, 0), . . . , f(~x, y−1) are defined; if there is no such y, µy f(~x, y) is undefined.
If R(~x, y) is a relation, µy R(~x, y) is defined to be the least y such that R(~x, y) is

1

true; in other words, the least y such that one minus the characteristic function
of R is equal to zero at ~x, y.

To show that a function is computable, there are two ways one can proceed:

1. Rigorously: describe a Turing machine or partial recursive function ex-
plicitly, and show that it computes the function you have in mind;

2. Informally: describe an algorithm that computes it, and appeal to Church’s
thesis.

There is no fine line between the two; a detailed description of an algorithm
should provide enough information so that it is relatively clear how one could,
in principle, design the right Turing machine or sequence of partial recursive
definitions. Fully rigorous definitions are unlikely to be informative, and we
will try to find a happy medium between these two approaches; in short, we
will try to find intuitive yet rigorous proofs that the precise definitions could
be obtained.

thy.2 Coding Computations

cmp:thy:cod:
sec

In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way.
For instance, you can think of Turing machine specifications, recursive
definitions, or programs in a programming language as providing these
definitions.

2. Describe the complete record of the computation of a function given
by some definition for a given input. For instance, a Turing machine
computation can be described by the sequence of configurations (state of
the machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of
how a computable function with a given definition would be computed
for a given input.

4. Extract from such a description of the complete record of a computation
the value of the function for a given input. For instance, the contents of
the tape in the very last step of a halting Turing machine computation
is the value.

Using coding, it is possible to assign to each description of a computable
function a numerical index in such a way that the instructions can be recovered
from the index in a computable way. Similarly, the complete record of a com-
putation can be coded by a single number as well. The resulting arithmetical
relation “s codes the record of computation of the function with index e for
input x” and the function “output of computation sequence with code s” are
then computable; in fact, they are primitive recursive.

2 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

This fundamental fact is very powerful, and allows us to prove a number
of striking and important results about computability, independently of the
model of computation chosen.

thy.3 The Normal Form Theorem

cmp:thy:nfm:
sec

Theorem thy.1 (Kleene’s Normal Form Theorem).cmp:thy:nfm:

thm:normal-form

There are a primitive
recursive relation T (k, x, s) and a primitive recursive function U(s), with the
following property: if f is any partial computable function, then for some k,

f(x) ' U(µs T (k, x, s))

for every x.

Proof Sketch. For any model of computation one can rigorously define a de-
scription of the computable function f and code such description using a nat-
ural number k. One can also rigorously define a notion of “computation se-
quence” which records the process of computing the function with index k for
input x. These computation sequences can likewise be coded as numbers s.
This can be done in such a way that (a) it is decidable whether a number s
codes the computation sequence of the function with index k on input x and
(b) what the end result of the computation sequence coded by s is. In fact, the
relation in (a) and the function in (b) are primitive recursive.

explanationIn order to give a rigorous proof of the Normal Form Theorem, we would
have to fix a model of computation and carry out the coding of descriptions of
computable functions and of computation sequences in detail, and verify that
the relation T and function U are primitive recursive. For most applications,
it suffices that T and U are computable and that U is total.

It is probably best to remember the proof of the normal form theorem in
slogan form: µs T (k, x, s) searches for a computation sequence of the function
with index k on input x, and U returns the output of the computation sequence
if one can be found.

T and U can be used to define the enumeration ϕ0, ϕ1, ϕ2, From now
on, we will assume that we have fixed a suitable choice of T and U , and take
the equation

ϕe(x) ' U(µs T (e, x, s))

to be the definition of ϕe.

Here is another useful fact:

Theorem thy.2. Every partial computable function has infinitely many in-
dices.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Again, this is intuitively clear. Given any (description of) a computable
function, one can come up with a different description which computes the
same function (input-output pair) but does so, e.g., by first doing something
that has no effect on the computation (say, test if 0 = 0, or count to 5, etc.).
The index of the altered description will always be different from the original
index. Both are indices of the same function, just computed slightly differently.

thy.4 The s-m-n Theorem

cmp:thy:smn:
sec

explanation The next theorem is known as the “s-m-n theorem,” for a reason that will
be clear in a moment. The hard part is understanding just what the theorem
says; once you understand the statement, it will seem fairly obvious.

Theorem thy.3. cmp:thy:smn:

thm:s-m-n

For each pair of natural numbers n and m, there is a prim-
itive recursive function smn such that for every sequence x, a0, . . . , am−1, y0
,. . . , yn−1, we have

ϕnsmn (x,a0,...,am−1)
(y0, . . . , yn−1) ' ϕm+n

x (a0, . . . , am−1, y0, . . . , yn−1).

explanation It is helpful to think of smn as acting on programs. That is, smn takes a
program, x, for an (m+ n)-ary function, as well as fixed inputs a0, . . . , am−1;
and it returns a program, smn (x, a0, . . . , am−1), for the n-ary function of the
remaining arguments. It you think of x as the description of a Turing machine,
then smn (x, a0, . . . , am−1) is the Turing machine that, on input y0, . . . , yn−1,
prepends a0, . . . , am−1 to the input string, and runs x. Each smn is then just
a primitive recursive function that finds a code for the appropriate Turing
machine.

thy.5 The Universal Partial Computable Function

cmp:thy:uni:
sec

Theorem thy.4. cmp:thy:uni:

thm:univ-comp

There is a universal partial computable function Un(k, x).
In other words, there is a function Un(k, x) such that:

1. Un(k, x) is partial computable.

2. If f(x) is any partial computable function, then there is a natural number
k such that f(x) ' Un(k, x) for every x.

Proof. Let Un(k, x) ' U(µs T (k, x, s)) in Kleene’s normal form theorem.

explanation This is just a precise way of saying that we have an effective enumeration of
the partial computable functions; the idea is that if we write fk for the function
defined by fk(x) = Un(k, x), then the sequence f0, f1, f2, . . . includes all the
partial computable functions, with the property that fk(x) can be computed
“uniformly” in k and x. For simplicity, we am using a binary function that

4 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

is universal for unary functions, but by coding sequences of numbers we can
easily generalize this to more arguments. For example, note that if f(x, y, z) is
a 3-place partial recursive function, then the function g(x) ' f((x)0, (x)1, (x)2)
is a unary recursive function.

thy.6 No Universal Computable Function

cmp:thy:nou:
sec

Theorem thy.5.cmp:thy:nou:

thm:no-univ

There is no universal computable function. In other words,
the universal function Un′(k, x) = ϕk(x) is not computable.

Proof. This theorem says that there is no total computable function that is
universal for the total computable functions. The proof is a simple diagonal-
ization: if Un′(k, x) were total and computable, then

d(x) = Un′(x, x) + 1

would also be total and computable. However, for every k, d(k) is not equal to
Un′(k, k).

explanationTheorem Theorem thy.4 above shows that we can get around this diago-
nalization argument, but only at the expense of allowing partial functions. It
is worth trying to understand what goes wrong with the diagonalization argu-
ment, when we try to apply it in the partial case. In particular, the function
h(x) = Un(x, x) + 1 is partial recursive. Suppose h is the k-th function in the
enumeration; what can we say about h(k)?

thy.7 The Halting Problem

cmp:thy:hlt:
sec

Since, in our construction, Un(k, x) is defined if and only if the computation
of the function coded by k produces a value for input x, it is natural to ask
if we can decide whether this is the case. And in fact, it is not. For the
Turing machine model of computation, this means that whether a given Turing
machine halts on a given input is computationally undecidable. The following
theorem is therefore known as the “undecidability of the halting problem.” I
will provide two proofs below. The first continues the thread of our previous
discussion, while the second is more direct.

Theorem thy.6.cmp:thy:hlt:

thm:halting-problem

Let

h(k, x) =

{
1 if Un(k, x) is defined

0 otherwise.

Then h is not computable.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. If h were computable, we would have a universal computable function,
as follows. Suppose h is computable, and define

Un′(k, x) =

{
fnUn(k, x) if h(k, x) = 1

0 otherwise.

But now Un′(k, x) is a total function, and is computable if h is. For instance,
we could define g using primitive recursion, by

g(0, k, x) ' 0

g(y + 1, k, x) ' Un(k, x);

then
Un′(k, x) ' g(h(k, x), k, x).

And since Un′(k, x) agrees with Un(k, x) wherever the latter is defined, Un′ is
universal for those partial computable functions that happen to be total. But
this contradicts Theorem thy.5.

Proof. Suppose h(k, x) were computable. Define the function g by

g(x) =

{
0 if h(x, x) = 0

undefined otherwise.

The function g is partial computable; for example, one can define it as µy h(x, x) =
0. So, for some k, g(x) ' Un(k, x) for every x. Is g defined at k? If it is, then,
by the definition of g, h(k, k) = 0. By the definition of f , this means that
Un(k, k) is undefined; but by our assumption that g(k) ' Un(k, x) for every
x, this means that g(k) is undefined, a contradiction. On the other hand, if
g(k) is undefined, then h(k, k) 6= 0, and so h(k, k) = 1. But this means that
Un(k, k) is defined, i.e., that g(k) is defined.

explanation We can describe this argument in terms of Turing machines. Suppose there
were a Turing machine H that took as input a description of a Turing machine
K and an input x, and decided whether or not K halts on input x. Then we
could build another Turing machine G which takes a single input x, calls H to
decide if machine x halts on input x, and does the opposite. In other words,
if H reports that x halts on input x, G goes into an infinite loop, and if H
reports that x doesn’t halt on input x, then G just halts. Does G halt on
input G? The argument above shows that it does if and only if it doesn’t—a
contradiction. So our supposition that there is a such Turing machine H, is
false.

thy.8 Comparison with Russell’s Paradox

cmp:thy:rus:
sec

It is instructive to compare and contrast the arguments in this section with
Russell’s paradox:

6 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

1. Russell’s paradox: let S = {x : x /∈ x}. Then x ∈ S if and only if x /∈ S,
a contradiction.

Conclusion: There is no such set S. Assuming the existence of a “set of
all sets” is inconsistent with the other axioms of set theory.

2. A modification of Russell’s paradox: let F be the “function” from the set
of all functions to {0, 1}, defined by

F (f) =

{
1 if f is in the domain of f , and f(f) = 0

0 otherwise

A similar argument shows that F (F) = 0 if and only if F (F) = 1, a
contradiction.

Conclusion: F is not a function. The “set of all functions” is too big to
be the domain of a function.

3. The diagonalization argument: let f0, f1, . . . be the enumeration of the
partial computable functions, and let G : N→ {0, 1} be defined by

G(x) =

{
1 if fx(x) ↓= 0

0 otherwise

If G is computable, then it is the function fk for some k. But then
G(k) = 1 if and only if G(k) = 0, a contradiction.

Conclusion: G is not computable. Note that according to the axioms of
set theory, G is still a function; there is no paradox here, just a clarifica-
tion.

That talk of partial functions, computable functions, partial computable
functions, and so on can be confusing. The set of all partial functions from N
to N is a big collection of objects. Some of them are total, some of them are
computable, some are both total and computable, and some are neither. Keep
in mind that when we say “function,” by default, we mean a total function.
Thus we have:

1. computable functions

2. partial computable functions that are not total

3. functions that are not computable

4. partial functions that are neither total nor computable

To sort this out, it might help to draw a big square representing all the partial
functions from N to N, and then mark off two overlapping regions, correspond-
ing to the total functions and the computable partial functions, respectively.
It is a good exercise to see if you can describe an object in each of the resulting
regions in the diagram.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 7

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

thy.9 Computable Sets

cmp:thy:cps:
sec

We can extend the notion of computability from computable functions to
computable sets:

Definition thy.7. Let S be a set of natural numbers. Then S is computable iff
its characteristic function is. In other words, S is computable iff the function

χS(x) =

{
1 if x ∈ S
0 otherwise

is computable. Similarly, a relation R(x0, . . . , xk−1) is computable if and only
if its characteristic function is.

explanation Computable sets are also called decidable.
Notice that we now have a number of notions of computability: for partial

functions, for functions, and for sets. Do not get them confused! The Turing
machine computing a partial function returns the output of the function, for
input values at which the function is defined; the Turing machine computing
a set returns either 1 or 0, after deciding whether or not the input value is in
the set or not.

thy.10 Computably Enumerable Sets

cmp:thy:ces:
sec

Definition thy.8. A set is computably enumerable if it is empty or the range
of a computable function.

Historical Remarks Computably enumarable sets are also called recursively
enumerable instead. This is the original terminology, and today both are com-
monly used, as well as the abbreviations “c.e.” and “r.e.”

explanation You should think about what the definition means, and why the terminology
is appropriate. The idea is that if S is the range of the computable function f ,
then

S = {f(0), f(1), f(2), . . . },
and so f can be seen as “enumerating” the elements of S. Note that according
to the definition, f need not be an increasing function, i.e., the enumeration
need not be in increasing order. In fact, f need not even be injective, so that
the constant function f(x) = 0 enumerates the set {0}.

Any computable set is computably enumerable. To see this, suppose S is
computable. If S is empty, then by definition it is computably enumerable.
Otherwise, let a be any element of S. Define f by

f(x) =

{
x if χS(x) = 1

a otherwise.

Then f is a computable function, and S is the range of f .

8 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

thy.11 Equivalent Defininitions of Computably
Enumerable Sets

cmp:thy:eqc:
sec

The following gives a number of important equivalent statements of what
it means to be computably enumerable.

Theorem thy.9.cmp:thy:eqc:

thm:ce-equiv

Let S be a set of natural numbers. Then the following are
equivalent:

1. S is computably enumerable.

2. S is the range of a partial computable function.

3. S is empty or the range of a primitive recursive function.

4. S is the domain of a partial computable function.

explanationThe first three clauses say that we can equivalently take any non-empty
computably enumerable set to be enumerated by either a computable function,
a partial computable function, or a primitive recursive function. The fourth
clause tells us that if S is computably enumerable, then for some index e,

S = {x : ϕe(x) ↓}.

In other words, S is the set of inputs on for which the computation of ϕe
halts. For that reason, computably enumerable sets are sometimes called semi-
decidable: if a number is in the set, you eventually get a “yes,” but if it isn’t,
you never get a “no”!

Proof. Since every primitive recursive function is computable and every com-
putable function is partial computable, (3) implies (1) and (1) implies (2).
(Note that if S is empty, S is the range of the partial computable function that
is nowhere defined.) If we show that (2) implies (3), we will have shown the
first three clauses equivalent.

So, suppose S is the range of the partial computable function ϕe. If S is
empty, we are done. Otherwise, let a be any element of S. By Kleene’s normal
form theorem, we can write

ϕe(x) = U(µs T (e, x, s)).

In particular, ϕe(x) ↓ and = y if and only if there is an s such that T (e, x, s)
and U(s) = y. Define f(z) by

f(z) =

{
U((z)1) if T (e, (z)0, (z)1)

a otherwise.

Then f is primitive recursive, because T and U are. Expressed in terms of
Turing machines, if z codes a pair 〈(z)0, (z)1〉 such that (z)1 is a halting com-
putation of machine e on input (z)0, then f returns the output of the compu-
tation; otherwise, it returns a.We need to show that S is the range of f , i.e.,

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 9

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

for any natural number y, y ∈ S if and only if it is in the range of f . In the
forwards direction, suppose y ∈ S. Then y is in the range of ϕe, so for some
x and s, T (e, x, s) and U(s) = y; but then y = f(〈x, s〉). Conversely, suppose
y is in the range of f . Then either y = a, or for some z, T (e, (z)0, (z)1) and
U((z)1) = y. Since, in the latter case, ϕe(x) ↓= y, either way, y is in S.

(The notation ϕe(x) ↓= y means “ϕe(x) is defined and equal to y.” We
could just as well use ϕe(x) = y, but the extra arrow is sometimes helpful in
reminding us that we are dealing with a partial function.)

To finish up the proof of Theorem thy.9, it suffices to show that (1) and (4)
are equivalent. First, let us show that (1) implies (4). Suppose S is the range
of a computable function f , i.e.,

S = {y : for some x,f(x) = y}.

Let
g(y) = µx f(x) = y.

Then g is a partial computable function, and g(y) is defined if and only if for
some x, f(x) = y. In other words, the domain of g is the range of f . Expressed
in terms of Turing machines: given a Turing machine F that enumerates the
elements of S, let G be the Turing machine that semi-decides S by searching
through the outputs of F to see if a given element is in the set.

Finally, to show (4) implies (1), suppose that S is the domain of the partial
computable function ϕe, i.e.,

S = {x : ϕe(x) ↓}.

If S is empty, we are done; otherwise, let a be any element of S. Define f by

f(z) =

{
(z)0 if T (e, (z)0, (z)1)

a otherwise.

Then, as above, a number x is in the range of f if and only if ϕe(x) ↓, i.e., if and
only if x ∈ S. Expressed in terms of Turing machines: given a machine Me that
semi-decides S, enumerate the elements of S by running through all possible
Turing machine computations, and returning the inputs that correspond to
halting computations.

The fourth clause of Theorem thy.9 provides us with a convenient way of
enumerating the computably enumerable sets: for each e, let We denote the
domain of ϕe. Then if A is any computably enumerable set, A = We, for some
e.

The following provides yet another characterization of the computably enu-
merable sets.

Theorem thy.10. cmp:thy:eqc:

thm:exists-char

A set S is computably enumerable if and only if there is a
computable relation R(x, y) such that

S = {x : ∃y R(x, y)}.

10 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. In the forward direction, suppose S is computably enumerable. Then
for some e, S = We. For this value of e we can write S as

S = {x : ∃y T (e, x, y)}.

In the reverse direction, suppose S = {x : ∃y R(x, y)}. Define f by

f(x) ' µy AtomRx, y.

Then f is partial computable, and S is the domain of f .

thy.12 Computably Enumerable Sets are Closed under
Union and Intersection

cmp:thy:clo:
sec

The following theorem gives some closure properties on the set of com-
putably enumerable sets.

Theorem thy.11. Suppose A and B are computably enumerable. Then so are
A ∩B and A ∪B.

Proof. Theorem thy.9 allows us to use various characterizations of the com-
putably enumerable sets. By way of illustration, we will provide a few different
proofs.

For the first proof, suppose A is enumerated by a computable function f ,
and B is enumerated by a computable function g. Let

h(x) = µy (f(y) = x ∨ g(y) = x) and

j(x) = µy (f((y)0) = x ∧ g((y)1) = x).

Then A ∪B is the domain of h, and A ∩B is the domain of j.
explanationHere is what is going on, in computational terms: given procedures that

enumerate A and B, we can semi-decide if an element x is in A∪B by looking
for x in either enumeration; and we can semi-decide if an element x is in A∩B
for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is
enumerated by g. Let

k(x) =

{
f(x/2) if x is even

g((x− 1)/2) if x is odd.

Then k enumerates A ∪ B; the idea is that k just alternates between the enu-
merations offered by f and g. Enumerating A∩B is tricker. If A∩B is empty,
it is trivially computably enumerable. Otherwise, let c be any element of A∩B,
and define l by

l(x) =

{
f((x)0) if f((x)0) = g((x)1)

c otherwise.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 11

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

In computational terms, l runs through pairs of elements in the enumerations of
f and g, and outputs every match it finds; otherwise, it just stalls by outputting
c.

For the last proof, suppose A is the domain of the partial function m(x)
and B is the domain of the partial function n(x). Then A ∩ B is the domain
of the partial function m(x) + n(x).

explanation In computational terms, if A is the set of values for which m halts and B
is the set of values for which n halts, A ∩B is the set of values for which both
procedures halt.

Expressing A ∪ B as a set of halting values is more difficult, because one
has to simulate m and n in parallel. Let d be an index for m and let e be an
index for n; in other words, m = ϕd and n = ϕe. Then A∪B is the domain of
the function

p(x) = µy (T (d, x, y) ∨ T (e, x, y)).

explanation In computational terms, on input x, p searches for either a halting compu-
tation for m or a halting computation for n, and halts if it finds either one.

thy.13 Computably Enumerable Sets not Closed under
Complement

cmp:thy:cmp:
sec

Suppose A is computably enumerable. Is the complement of A, A = N \
A, necessarily computably enumerable as well? The following theorem and
corollary show that the answer is “no.”

Theorem thy.12. cmp:thy:cmp:

thm:ce-comp

Let A be any set of natural numbers. Then A is computable

if and only if both A and A are computably enumerable.

Proof. The forwards direction is easy: if A is computable, then A is computable
as well (χA = 1 −̇ χA), and so both are computably enumerable.

In the other direction, suppose A and A are both computably enumerable.
Let A be the domain of ϕd, and let A be the domain of ϕe. Define h by

h(x) = µs (T (d, x, s) ∨ T (e, x, s)).

In other words, on input x, h searches for either a halting computation of ϕd
or a halting computation of ϕe. Now, if x ∈ A, it will succeed in the first case,
and if x ∈ A, it will succeed in the second case. So, h is a total computable
function. But now we have that for every x, x ∈ A if and only if T (e, x, h(x)),
i.e., if ϕe is the one that is defined. Since T (e, x, h(x)) is a computable relation,
A is computable.

explanation It is easier to understand what is going on in informal computational terms:
to decide A, on input x search for halting computations of ϕe and ϕf . One of
them is bound to halt; if it is ϕe, then x is in A, and otherwise, x is in A.

Corollary thy.13. cmp:thy:cmp:

cor:comp-k

K0 is not computably enumerable.

12 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. We know that K0 is computably enumerable, but not computable. If
K0 were computably enumerable, then K0 would be computable by Theo-
rem thy.12.

thy.14 Reducibility

cmp:thy:red:
sec

explanationWe now know that there is at least one set, K0, that is computably enu-
merable but not computable. It should be clear that there are others. The
method of reducibility provides a powerful method of showing that other sets
have these properties, without constantly having to return to first principles.

Generally speaking, a “reduction” of a set A to a set B is a method of
transforming answers to whether or not elements are in B into answers as to
whether or not elements are in A. We will focus on a notion called “many-
one reducibility,” but there are many other notions of reducibility available,
with varying properties. Notions of reducibility are also central to the study
of computational complexity, where efficiency issues have to be considered as
well. For example, a set is said to be “NP-complete” if it is in NP and every
NP problem can be reduced to it, using a notion of reduction that is similar to
the one described below, only with the added requirement that the reduction
can be computed in polynomial time.

We have already used this notion implicitly. Define the set K by

K = {x : ϕx(x) ↓},

i.e., K = {x : x ∈ Wx}. Our proof that the halting problem in unsolvable,
Theorem thy.6, shows most directly that K is not computable. Recall that K0

is the set
K0 = {〈e, x〉 : ϕe(x) ↓}.

i.e. K0 = {〈x, e〉 : x ∈We}. It is easy to extend any proof of the uncomputabil-
ity of K to the uncomputability of K0: if K0 were computable, we could decide
whether or not an element x is in K simply by asking whether or not the pair
〈x, x〉 is in K0. The function f which maps x to 〈x, x〉 is an example of a
reduction of K to K0.

Definition thy.14. Let A and B be sets. Then A is said to be many-one
reducible to B, written A ≤m B, if there is a computable function f such that
for every natural number x,

x ∈ A if and only if f(x) ∈ B.

If A is many-one reducible to B and vice-versa, then A and B are said to be
many-one equivalent, written A ≡m B.

If the function f in the definition above happens to be injective, A is said
to be one-one reducible to B. Most of the reductions described below meet
this stronger requirement, but we will not use this fact.

digression

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 13

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

It is true, but by no means obvious, that one-one reducibility really is a
stronger requirement than many-one reducibility. In other words, there are
infinite sets A and B such that A is many-one reducible to B but not one-one
reducible to B.

thy.15 Properties of Reducibility

cmp:thy:ppr:
sec

The intuition behind writing A ≤m B is that A is “no harder than” B. The
following two propositions support this intuition.

Proposition thy.15. cmp:thy:ppr:

prop:trans-red

If A ≤m B and B ≤m C, then A ≤m C.

Proof. Composing a reduction of A to B with a reduction of B to C yields a
reduction of A to C. (You should check the details!)

Proposition thy.16. cmp:thy:ppr:

prop:reduce

Let A and B be any sets, and suppose A is many-one
reducible to B.

1. If B is computably enumerable, so is A.

2. If B is computable, so is A.

Proof. Let f be a many-one reduction from A to B. For the first claim, just
check that if B is the domain of a partial function g, then A is the domain
of g ◦ f :

x ∈ Aiff f(x) ∈ B
iff g(f(x)) ↓ .

For the second claim, remember that if B is computable then B and B
are computably enumerable. It is not hard to check that f is also a many-one
reduction of A to B, so, by the first part of this proof, A and A are computably
enumerable. So A is computable as well. (Alternatively, you can check that
χA = χB ◦ f ; so if χB is computable, then so is χA.)

digression A more general notion of reducibility called Turing reducibility is useful
in other contexts, especially for proving undecidability results. Note that by
Corollary thy.13, the complement of K0 is not reducible to K0, since it is not
computably enumerable. But, intuitively, if you knew the answers to questions
about K0, you would know the answer to questions about its complement as
well. A set A is said to be Turing reducible to B if one can determine answers to
questions in A using a computable procedure that can ask questions about B.
This is more liberal than many-one reducibility, in which (1) you are only
allowed to ask one question about B, and (2) a “yes” answer has to translate
to a “yes” answer to the question about A, and similarly for “no.” It is still
the case that if A is Turing reducible to B and B is computable then A is
computable as well (though, as we have seen, the analogous statement does
not hold for computable enumerability).

14 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

You should think about the various notions of reducibility we have dis-
cussed, and understand the distinctions between them. We will, however, only
deal with many-one reducibility in this chapter. Incidentally, both types of
reducibility discussed in the last paragraph have analogues in computational
complexity, with the added requirement that the Turing machines run in poly-
nomial time: the complexity version of many-one reducibility is known as Karp
reducibility, while the complexity version of Turing reducibility is known as
Cook reducibility.

thy.16 Complete Computably Enumerable Sets

cmp:thy:cce:
sec

Definition thy.17. A set A is a complete computably enumerable set (under
many-one reducibility) if

1. A is computably enumerable, and

2. for any other computably enumerable set B, B ≤m A.

In other words, complete computably enumerable sets are the “hardest”
computably enumerable sets possible; they allow one to answer questions about
any computably enumerable set.

Theorem thy.18. K, K0, and K1 are all complete computably enumerable
sets.

Proof. To see that K0 is complete, let B be any computably enumerable set.
Then for some index e,

B = We = {x : ϕe(x) ↓}.

Let f be the function f(x) = 〈e, x〉. Then for every natural number x, x ∈ B
if and only if f(x) ∈ K0. In other words, f reduces B to K0.

To see that K1 is complete, note that in the proof of Proposition thy.19 we
reduced K0 to it. So, by Proposition thy.15, any computably enumerable set
can be reduced to K1 as well.

K can be reduced to K0 in much the same way.

Problem thy.1. Give a reduction of K to K0.

digressionSo, it turns out that all the examples of computably enumerable sets that
we have considered so far are either computable, or complete. This should
seem strange! Are there any examples of computably enumerable sets that
are neither computable nor complete? The answer is yes, but it wasn’t until
the middle of the 1950s that this was established by Friedberg and Muchnik,
independently.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 15

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

thy.17 An Example of Reducibility

cmp:thy:k1:
sec

Let us consider an application of Proposition thy.16.

Proposition thy.19. cmp:thy:k1:

prop:k1

Let

K1 = {e : ϕe(0) ↓}.

Then K1 is computably enumerable but not computable.

Proof. Since K1 = {e : ∃s T (e, 0, s)}, K1 is computably enumerable by Theo-
rem thy.10.

To show that K1 is not computable, let us show that K0 is reducible to it.
explanation This is a little bit tricky, since using K1 we can only ask questions about

computations that start with a particular input, 0. Suppose you have a smart
friend who can answer questions of this type (friends like this are known as
“oracles”). Then suppose someone comes up to you and asks you whether or
not 〈e, x〉 is in K0, that is, whether or not machine e halts on input x. One
thing you can do is build another machine, ex, that, for any input, ignores that
input and instead runs e on input x. Then clearly the question as to whether
machine e halts on input x is equivalent to the question as to whether machine
ex halts on input 0 (or any other input). So, then you ask your friend whether
this new machine, ex, halts on input 0; your friend’s answer to the modified
question provides the answer to the original one. This provides the desired
reduction of K0 to K1.

Using the universal partial computable function, let f be the 3-ary function
defined by

f(x, y, z) ' ϕx(y).

Note that f ignores its third input entirely. Pick an index e such that f = ϕ3
e;

so we have
ϕ3
e(x, y, z) ' ϕx(y).

By the s-m-n theorem, there is a function s(e, x, y) such that, for every z,

ϕs(e,x,y)(z) ' ϕ3
e(x, y, z)

' ϕx(y).

explanation In terms of the informal argument above, s(e, x, y) is an index for the ma-
chine that, for any input z, ignores that input and computes ϕx(y).

In particular, we have

ϕs(e,x,y)(0) ↓ if and only if ϕx(y) ↓ .

In other words, 〈x, y〉 ∈ K0 if and only if s(e, x, y) ∈ K1. So the function g
defined by

g(w) = s(e, (w)0, (w)1)

is a reduction of K0 to K1.

16 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

thy.18 Totality is Undecidable

cmp:thy:tot:
sec

Let us consider one more example of using the s-m-n theorem to show that
something is noncomputable. Let Tot be the set of indices of total computable
functions, i.e.

Tot = {x : for every y, ϕx(y) ↓}.

Proposition thy.20.cmp:thy:tot:

prop:total

Tot is not computable.

Proof. To see that Tot is not computable, it suffices to show that K is reducible
to it. Let h(x, y) be defined by

h(x, y) '

{
0 if x ∈ K
undefined otherwise

Note that h(x, y) does not depend on y at all. It should not be hard to see that
h is partial computable: on input x, y, the we compute h by first simulating
the function ϕx on input x; if this computation halts, h(x, y) outputs 0 and
halts. So h(x, y) is just Z(µs T (x, x, s)), where Z is the constant zero function.

Using the s-m-n theorem, there is a primitive recursive function k(x) such
that for every x and y,

ϕk(x)(y) =

{
0 if x ∈ K
undefined otherwise

So ϕk(x) is total if x ∈ K, and undefined otherwise. Thus, k is a reduction of
K to Tot.

digressionIt turns out that Tot is not even computably enumerable—its complexity
lies further up on the “arithmetic hierarchy.” But we will not worry about this
strengthening here.

thy.19 Rice’s Theorem

cmp:thy:rce:
sec

If you think about it, you will see that the specifics of Tot do not play into
the proof of Proposition thy.20. We designed h(x, y) to act like the constant
function j(y) = 0 exactly when x is in K; but we could just as well have made
it act like any other partial computable function under those circumstances.
This observation lets us state a more general theorem, which says, roughly,
that no nontrivial property of computable functions is decidable.

Keep in mind that ϕ0, ϕ1, ϕ2, . . . is our standard enumeration of the partial
computable functions.

Theorem thy.21 (Rice’s Theorem). Let C be any set of partial computable
functions, and let A = {n : ϕn ∈ C}. If A is computable, then either C is ∅ or
C is the set of all the partial computable functions.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 17

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

An index set is a set A with the property that if n and m are indices which
“compute” the same function, then either both n and m are in A, or neither is.
It is not hard to see that the set A in the theorem has this property. Conversely,
if A is an index set and C is the set of functions computed by these indices,
then A = {n : ϕn ∈ C}.

explanation With this terminology, Rice’s theorem is equivalent to saying that no non-
trivial index set is decidable. To understand what the theorem says, it is helpful
to emphasize the distinction between programs (say, in your favorite program-
ming language) and the functions they compute. There are certainly questions
about programs (indices), which are syntactic objects, that are computable:
does this program have more than 150 symbols? Does it have more than 22
lines? Does it have a “while” statement? Does the string “hello world” every
appear in the argument to a “print” statement? Rice’s theorem says that no
nontrivial question about the program’s behavior is computable. This includes
questions like these: does the program halt on input 0? Does it ever halt?
Does it ever output an even number?

Proof of Rice’s theorem. Suppose C is neither ∅ nor the set of all the partial
computable functions, and let A be the set of indices of functions in C. We
will show that if A were computable, we could solve the halting problem; so
A is not computable.

Without loss of generality, we can assume that the function f which is
nowhere defined is not in C (otherwise, switch C and its complement in the
argument below). Let g be any function in C. The idea is that if we could
decide A, we could tell the difference between indices computing f , and in-
dices computing g; and then we could use that capability to solve the halting
problem.

Here’s how. Using the universal computation predicate, we can define a
function

h(x, y) '

{
undefined if ϕx(x) ↑
g(y) otherwise.

To compute h, first we try to compute ϕx(x); if that computation halts, we
go on to compute g(y); and if that computation halts, we return the output.
More formally, we can write

h(x, y) ' P 2
0 (g(y),Un(x, x)).

where P 2
0 (z0, z1) = z0 is the 2-place projection function returning the 0-th

argument, which is computable.
Then h is a composition of partial computable functions, and the right side

is defined and equal to g(y) just when Un(x, x) and g(y) are both defined.
Notice that for a fixed x, if ϕx(x) is undefined, then h(x, y) is undefined for

every y; and if ϕx(x) is defined, then h(x, y) ' g(y). So, for any fixed value
of x, either h(x, y) acts just like f or it acts just like g, and deciding whether or
not ϕx(x) is defined amounts to deciding which of these two cases holds. But

18 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

this amounts to deciding whether or not hx(y) ' h(x, y) is in C or not, and if
A were computable, we could do just that.

More formally, since h is partial computable, it is equal to the function ϕk
for some index k. By the s-m-n theorem there is a primitive recursive function
s such that for each x, ϕs(k,x)(y) = hx(y). Now we have that for each x, if
ϕx(x) ↓, then ϕs(k,x) is the same function as g, and so s(k, x) is in A. On the
other hand, if ϕx(x) ↑, then ϕs(k,x) is the same function as f , and so s(k, x)
is not in A. In other words we have that for every x, x ∈ K if and only if
s(k, x) ∈ A. If A were computable, K would be also, which is a contradiction.
So A is not computable.

Rice’s theorem is very powerful. The following immediate corollary shows
some sample applications.

Corollary thy.22. The following sets are undecidable.

1. {x : 17 is in the range of ϕx}

2. {x : ϕx is constant}

3. {x : ϕx is total}

4. {x : whenever y < y′, ϕx(y) ↓, and if ϕx(y′) ↓, then ϕx(y) < ϕx(y′)}

Proof. These are all nontrivial index sets.

thy.20 The Fixed-Point Theorem

cmp:thy:fix:
sec

Let’s consider the halting problem again. As temporary notation, let us
write pϕx(y)q for 〈x, y〉; think of this as representing a “name” for the value
ϕx(y). With this notation, we can reword one of our proofs that the halting
problem is undecidable.

Question: is there a computable function h, with the following property?
For every x and y,

h(pϕx(y)q) =

{
1 if ϕx(y) ↓
0 otherwise.

Answer: No; otherwise, the partial function

g(x) '

{
0 if h(pϕx(x)q) = 0

undefined otherwise

would be computable, and so have some index e. But then we have

ϕe(e) '

{
0 if h(pϕe(e)q) = 0

undefined otherwise,

in which case ϕe(e) is defined if and only if it isn’t, a contradiction.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 19

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Now, take a look at the equation with ϕe. There is an instance of self-
reference there, in a sense: we have arranged for the value of ϕe(e) to depend
on pϕe(e)q, in a certain way. The fixed-point theorem says that we can do this,
in general—not just for the sake of proving contradictions.

Lemma thy.23 gives two equivalent ways of stating the fixed-point theorem.
Logically speaking, the fact that the statements are equivalent follows from the
fact that they are both true; but what we really mean is that each one follows
straightforwardly from the other, so that they can be taken as alternative
statements of the same theorem.

Lemma thy.23. cmp:thy:fix:

lem:fixed-equiv

The following statements are equivalent:

1. For every partial computable function g(x, y), there is an index e such
that for every y,

ϕe(y) ' g(e, y).

2. For every computable function f(x), there is an index e such that for
every y,

ϕe(y) ' ϕf(e)(y).

Proof. (1) ⇒ (2): Given f , define g by g(x, y) ' Un(f(x), y). Use (1) to get
an index e such that for every y,

ϕe(y) = Un(f(e), y)

= ϕf(e)(y).

(2) ⇒ (1): Given g, use the s-m-n theorem to get f such that for every x
and y, ϕf(x)(y) ' g(x, y). Use (2) to get an index e such that

ϕe(y) = ϕf(e)(y)

= g(e, y).

This concludes the proof.

explanation Before showing that statement (1) is true (and hence (2) as well), consider
how bizarre it is. Think of e as being a computer program; statement (1) says
that given any partial computable g(x, y), you can find a computer program
e that computes ge(y) ' g(e, y). In other words, you can find a computer
program that computes a function that references the program itself.

Theorem thy.24. The two statements in Lemma thy.23 are true. Specifically,
for every partial computable function g(x, y), there is an index e such that for
every y,

ϕe(y) ' g(e, y).

Proof. The ingredients are already implicit in the discussion of the halting
problem above. Let diag(x) be a computable function which for each x returns
an index for the function fx(y) ' ϕx(x, y), i.e.

ϕdiag(x)(y) ' ϕx(x, y).

20 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Think of diag as a function that transforms a program for a 2-ary function
into a program for a 1-ary function, obtained by fixing the original program as
its first argument. The function diag can be defined formally as follows: first
define s by

s(x, y) ' Un2(x, x, y),

where Un2 is a 3-ary function that is universal for partial computable 2-ary
functions. Then, by the s-m-n theorem, we can find a primitive recursive
function diag satisfying

ϕdiag(x)(y) ' s(x, y).

Now, define the function l by

l(x, y) ' g(diag(x), y).

and let plq be an index for l. Finally, let e = diag(plq). Then for every y, we
have

ϕe(y) ' ϕ
diag(plq)(y)

' ϕplq(plq, y)

' l(plq, y)

' g(diag(plq), y)

' g(e, y),

as required.

explanationWhat’s going on? Suppose you are given the task of writing a computer
program that prints itself out. Suppose further, however, that you are working
with a programming language with a rich and bizarre library of string functions.
In particular, suppose your programming language has a function diag which
works as follows: given an input string s, diag locates each instance of the
symbol ‘x’ occuring in s, and replaces it by a quoted version of the original
string. For example, given the string

hello x world

as input, the function returns

hello ’hello x world’ world

as output. In that case, it is easy to write the desired program; you can check
that

print(diag(’print(diag(x))’))

does the trick. For more common programming languages like C++ and Java,
the same idea (with a more involved implementation) still works.

We are only a couple of steps away from the proof of the fixed-point theo-
rem. Suppose a variant of the print function print(x, y) accepts a string x and
another numeric argument y, and prints the string x repeatedly, y times. Then
the “program”

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 21

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

getinput(y); print(diag(’getinput(y); print(diag(x), y)’), y)

prints itself out y times, on input y. Replacing the getinput—print—diag
skeleton by an arbitrary funtion g(x, y) yields

g(diag(’g(diag(x), y)’), y)

which is a program that, on input y, runs g on the program itself and y.
Thinking of “quoting” with “using an index for,” we have the proof above.

For now, it is o.k. if you want to think of the proof as formal trickery, or
black magic. But you should be able to reconstruct the details of the argument
given above. When we prove the incompleteness theorems (and the related
“fixed-point theorem”) we will discuss other ways of understanding why it
works.

digression The same idea can be used to get a “fixed point” combinator. Suppose you
have a lambda term g, and you want another term k with the property that k
is β-equivalent to gk. Define terms

diag(x) = xx

and

l(x) = g(diag(x))

using our notational conventions; in other words, l is the term λx. g(xx). Let
k be the term ll. Then we have

k = (λx. g(xx))(λx. g(xx))

. g((λx. g(xx))(λx. g(xx)))

= gk.

If one takes

Y = λg. ((λx. g(xx))(λx. g(xx)))

then Y g and g(Y g) reduce to a common term; so Y g ≡β g(Y g). This is known
as “Curry’s combinator.” If instead one takes

Y = (λxg. g(xxg))(λxg. g(xxg))

then in fact Y g reduces to g(Y g), which is a stronger statement. This latter
version of Y is known as “Turing’s combinator.”

thy.21 Applying the Fixed-Point Theorem

cmp:thy:apf:
sec

The fixed-point theorem essentially lets us define partial computable func-
tions in terms of their indices. For example, we can find an index e such that
for every y,

ϕe(y) = e+ y.

22 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

As another example, one can use the proof of the fixed-point theorem to design
a program in Java or C++ that prints itself out.

Remember that if for each e, we let We be the domain of ϕe, then the
sequence W0, W1, W2, . . . enumerates the computably enumerable sets. Some
of these sets are computable. One can ask if there is an algorithm which takes
as input a value x, and, if Wx happens to be computable, returns an index for
its characteristic function. The answer is “no,” there is no such algorithm:

Theorem thy.25. There is no partial computable function f with the following
property: whenever We is computable, then f(e) is defined and ϕf(e) is its
characteristic function.

Proof. Let f be any computable function; we will construct an e such that We

is computable, but ϕf(e) is not its characteristic function. Using the fixed point
theorem, we can find an index e such that

ϕe(y) '

{
0 if y = 0 and ϕf(e)(0) ↓= 0

undefined otherwise.

That is, e is obtained by applying the fixed-point theorem to the function
defined by

g(x, y) '

{
0 if y = 0 and ϕf(x)(0) ↓= 0

undefined otherwise.

Informally, we can see that g is partial computable, as follows: on input x and
y, the algorithm first checks to see if y is equal to 0. If it is, the algorithm
computes f(x), and then uses the universal machine to compute ϕf(x)(0). If
this last computation halts and returns 0, the algorithm returns 0; otherwise,
the algorithm doesn’t halt.

But now notice that if ϕf(e)(0) is defined and equal to 0, then ϕe(y) is
defined exactly when y is equal to 0, so We = {0}. If ϕf(e)(0) is not defined,
or is defined but not equal to 0, then We = ∅. Either way, ϕf(e) is not the
characteristic function of We, since it gives the wrong answer on input 0.

thy.22 Defining Functions using Self-Reference

cmp:thy:slf:
sec

It is generally useful to be able to define functions in terms of themselves.
For example, given computable functions k, l, and m, the fixed-point lemma
tells us that there is a partial computable function f satisfying the following
equation for every y:

f(y) '

{
k(y) if l(y) = 0

f(m(y)) otherwise.

computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY 23

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Again, more specifically, f is obtained by letting

g(x, y) '

{
k(y) if l(y) = 0

ϕx(m(y)) otherwise

and then using the fixed-point lemma to find an index e such that ϕe(y) =
g(e, y).

For a concrete example, the “greatest common divisor” function gcd(u, v)
can be defined by

gcd(u, v) '

{
v if 0 = 0

gcd(mod(v, u), u) otherwise

where mod(v, u) denotes the remainder of dividing v by u. An appeal to the
fixed-point lemma shows that gcd is partial computable. (In fact, this can be
put in the format above, letting y code the pair 〈u, v〉.) A subsequent induction
on u then shows that, in fact, gcd is total.

Of course, one can cook up self-referential definitions that are much fancier
than the examples just discussed. Most programming languages support def-
initions of functions in terms of themselves, one way or another. Note that
this is a little bit less dramatic than being able to define a function in terms
of an index for an algorithm computing the functions, which is what, in full
generality, the fixed-point theorem lets you do.

thy.23 Minimization with Lambda Terms

cmp:thy:mla:
sec

When it comes to the lambda calculus, we’ve shown the following:

1. Every primitive recursive function is represented by a lambda term.

2. There is a lambda term Y such that for any lambda term G, Y G.G(Y G).

To show that every partial computable function is represented by some lambda
term, we only need to show the following.

Lemma thy.26. Suppose f(x, y) is primitive recursive. Let g be defined by

g(x) ' µy f(x, y) = 0.

Then g is represented by a lambda term.

Proof. The idea is roughly as follows. Given x, we will use the fixed-point
lambda term Y to define a function hx(n) which searches for a y starting at n;
then g(x) is just hx(0). The function hx can be expressed as the solution of a
fixed-point equation:

hx(n) '

{
n if f(x, n) = 0

hx(n+ 1) otherwise.

24 computability-theory rev: 445393f (2018-08-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Here are the details. Since f is primitive recursive, it is represented by some
term F . Remember that we also have a lambda term D such that D(M,N, 0).
M and D(M,N, 1) . N . Fixing x for the moment, to represent hx we want to
find a term H (depending on x) satisfying

H(n) ≡ D(n,H(S(n)), F (x, n)).

We can do this using the fixed-point term Y . First, let U be the term

λh. λz.D(z, (h(Sz)), F (x, z)),

and then let H be the term Y U . Notice that the only free variable in H is x.
Let us show that H satisfies the equation above.

By the definition of Y , we have

H = Y U ≡ U(Y U) = U(H).

In particular, for each natural number n, we have

H(n) ≡ U(H,n)

. D(n,H(S(n)), F (x, n)),

as required. Notice that if you substitute a numeral m for x in the last line,
the expression reduces to n if F (m,n) reduces to 0, and it reduces to H(S(n))
if F (m,n) reduces to any other numeral.

To finish off the proof, let G be λx.H(0). Then G represents g; in other
words, for every m, G(m) reduces to reduces to g(m), if g(m) is defined, and
has no normal form otherwise.

Photo Credits

25

Bibliography

26

	Computability Theory
	Introduction
	Coding Computations
	The Normal Form Theorem
	The s-m-n Theorem
	The Universal Partial Computable Function
	No Universal Computable Function
	The Halting Problem
	Comparison with Russell's Paradox
	Computable Sets
	Computably Enumerable Sets
	Definitions of C. E. Sets
	Union and Intersection of C.E. Sets
	Computably Enumerable Sets not Closed under Complement
	Reducibility
	Properties of Reducibility
	Complete Computably Enumerable Sets
	An Example of Reducibility
	Totality is Undecidable
	Rice's Theorem
	The Fixed-Point Theorem
	Applying the Fixed-Point Theorem
	Defining Functions using Self-Reference
	Minimization with Lambda Terms

	Photo Credits
	Bibliography

