Computably Enumerable Sets not Closed under thy.1 Complement

Suppose A is computably enumerable. Is the complement of A, $\overline{A} = \mathbb{N} \setminus$ cmp:thy:cmp: A, necessarily computably enumerable as well? The following theorem and corollary show that the answer is "no."

Theorem thy.1. Let A be any set of natural numbers. Then A is computable cmp:thy:cmp: thm:ce-comp if and only if both A and \overline{A} are computably enumerable.

> *Proof.* The forwards direction is easy: if A is computable, then \overline{A} is computable as well $(\chi_A = 1 - \chi_{\overline{A}})$, and so both are computably enumerable.

> In the other direction, suppose A and \overline{A} are both computably enumerable. Let A be the domain of φ_d , and let A be the domain of φ_e . Define h by

$$h(x) = \mu s \ (T(d, x, s) \lor T(e, x, s)).$$

In other words, on input x, h searches for either a halting computation of φ_d or a halting computation of φ_e . Now, if $x \in A$, it will succeed in the first case, and if $x \in A$, it will succeed in the second case. So, h is a total computable function. But now we have that for every $x, x \in A$ if and only if T(e, x, h(x)), i.e., if φ_e is the one that is defined. Since T(e, x, h(x)) is a computable relation, A is computable.

It is easier to understand what is going on in informal computational terms: explanation to decide A, on input x search for halting computations of φ_e and φ_f . One of them is bound to halt; if it is φ_e , then x is in A, and otherwise, x is in A.

Corollary thy.2. $\overline{K_0}$ is not computably enumerable. cmp:thy:cmp:cor:comp-k

Proof. We know that K_0 is computably enumerable, but not computable. If $\overline{K_0}$ were computably enumerable, then K_0 would be computable by Theorem thy.1.

Photo Credits

Bibliography