In every model of computation, it is possible to do the following:

1. Describe the definitions of computable functions in a systematic way. For instance, you can think of Turing machine specifications, recursive definitions, or programs in a programming language as providing these definitions.

2. Describe the complete record of the computation of a function given by some definition for a given input. For instance, a Turing machine computation can be described by the sequence of configurations (state of the machine, contents of the tape) for each step of computation.

3. Test whether a putative record of a computation is in fact the record of how a computable function with a given definition would be computed for a given input.

4. Extract from such a description of the complete record of a computation the value of the function for a given input. For instance, the contents of the tape in the very last step of a halting Turing machine computation is the value.

Using coding, it is possible to assign to each description of a computable function a numerical index in such a way that the instructions can be recovered from the index in a computable way. Similarly, the complete record of a computation can be coded by a single number as well. The resulting arithmetical relation “s codes the record of computation of the function with index e for input x” and the function “output of computation sequence with code s” are then computable; in fact, they are primitive recursive.

This fundamental fact is very powerful, and allows us to prove a number of striking and important results about computability, independently of the model of computation chosen.

Photo Credits

Bibliography