Theorem thy.1. Suppose A and B are computably enumerable. Then so are $A \cap B$ and $A \cup B$.

Proof. ?? allows us to use various characterizations of the computably enumerable sets. By way of illustration, we will provide a few different proofs.

For the first proof, suppose A is enumerated by a computable function f, and B is enumerated by a computable function g. Let

$$h(x) = \mu y (f(y) = x \lor g(y) = x)$$
$$j(x) = \mu y (f(y)_0 = x \land g(y)_1 = x).$$

Then $A \cup B$ is the domain of h, and $A \cap B$ is the domain of j.

Here is what is going on, in computational terms: given procedures that enumerate A and B, we can semi-decide if an element x is in $A \cup B$ by looking for x in either enumeration; and we can semi-decide if an element x is in $A \cap B$ for looking for x in both enumerations at the same time.

For the second proof, suppose again that A is enumerated by f and B is enumerated by g. Let

$$k(x) = \begin{cases} f(x/2) & \text{if } x \text{ is even} \\ g((x-1)/2) & \text{if } x \text{ is odd}. \end{cases}$$

Then k enumerates $A \cup B$; the idea is that k just alternates between the enumerations offered by f and g. Enumerating $A \cap B$ is trickier. If $A \cap B$ is empty, it is trivially computably enumerable. Otherwise, let c be any element of $A \cap B$, and define l by

$$l(x) = \begin{cases} f((x)_0) & \text{if } f((x)_0) = g((x)_1) \\ c & \text{otherwise}. \end{cases}$$

In computational terms, l runs through pairs of elements in the enumerations of f and g, and outputs every match it finds; otherwise, it just stalls by outputting c.

For the last proof, suppose A is the domain of the partial function $m(x)$ and B is the domain of the partial function $n(x)$. Then $A \cap B$ is the domain of the partial function $m(x) + n(x)$.

In computational terms, if A is the set of values for which m halts and B is the set of values for which n halts, $A \cap B$ is the set of values for which both procedures halt.

Expressing $A \cup B$ as a set of halting values is more difficult, because one has to simulate m and n in parallel. Let d be an index for m and let e be an
index for n; in other words, $m = \varphi_d$ and $n = \varphi_e$. Then $A \cup B$ is the domain of the function

$$p(x) = \mu y \ (T(d, x, y) \lor T(e, x, y)).$$

In computational terms, on input x, p searches for either a halting computation for m or a halting computation for n, and halts if it finds either one.

Photo Credits

Bibliography