Applying the Fixed-Point Theorem

The fixed-point theorem essentially lets us define partial computable functions in terms of their indices. For example, we can find an index \(e \) such that for every \(y \),

\[
\varphi_e(y) = e + y.
\]

As another example, one can use the proof of the fixed-point theorem to design a program in Java or C++ that prints itself out.

Remember that if for each \(e \), we let \(W_e \) be the domain of \(\varphi_e \), then the sequence \(W_0, W_1, W_2, \ldots \) enumerates the computably enumerable sets. Some of these sets are computable. One can ask if there is an algorithm which takes as input a value \(x \), and, if \(W_x \) happens to be computable, returns an index for its characteristic function. The answer is “no,” there is no such algorithm:

Theorem thy.1. There is no partial computable function \(f \) with the following property: whenever \(W_e \) is computable, then \(f(e) \) is defined and \(\varphi_{f(e)} \) is its characteristic function.

Proof. Let \(f \) be any computable function; we will construct an \(e \) such that \(W_e \) is computable, but \(\varphi_{f(e)} \) is not its characteristic function. Using the fixed point theorem, we can find an index \(e \) such that

\[
\varphi_e(y) \simeq \begin{cases}
0 & \text{if } y = 0 \text{ and } \varphi_{f(e)}(0) \downarrow = 0 \\
\text{undefined} & \text{otherwise.}
\end{cases}
\]

That is, \(e \) is obtained by applying the fixed-point theorem to the function defined by

\[
g(x, y) \simeq \begin{cases}
0 & \text{if } y = 0 \text{ and } \varphi_{f(x)}(0) \downarrow = 0 \\
\text{undefined} & \text{otherwise.}
\end{cases}
\]

Informally, we can see that \(g \) is partial computable, as follows: on input \(x \) and \(y \), the algorithm first checks to see if \(y \) is equal to 0. If it is, the algorithm computes \(f(x) \), and then uses the universal machine to compute \(\varphi_{f(x)}(0) \). If this last computation halts and returns 0, the algorithm returns 0; otherwise, the algorithm doesn’t halt.

But now notice that if \(\varphi_{f(e)}(0) \) is defined and equal to 0, then \(\varphi_e(y) \) is defined exactly when \(y \) is equal to 0, so \(W_e = \{0\} \). If \(\varphi_{f(e)}(0) \) is not defined, or is defined but not equal to 0, then \(W_e = \emptyset \). Either way, \(\varphi_{f(e)} \) is not the characteristic function of \(W_e \), since it gives the wrong answer on input 0. □

Photo Credits

Bibliography