| $If \prec is \dots$ | then is true in \mathfrak{M} : | |---|--| | transitive: | $FFp \to Fp$ | | $\forall u \forall v \forall w ((u \prec v \land v \prec w) \to u \prec w)$ | | | linear: | $(FPp \vee PFp) \to (Pp \vee p \vee Fp)$ | | $\forall w \forall v (w \prec v \lor w = v \lor v \prec w)$ | | | dense: | Fp o FFp | | $\forall w \forall v (w \prec v \to \exists u (w \prec u \land u \prec v))$ | | | unbounded (past): | $Hp \rightarrow Pp$ | | $\forall w \exists v (v \prec w)$ | | | unbounded (future): | Gp o Fp | | $\forall w \exists v (w \prec v)$ | | Table 1: Some temporal frame correspondence properties. aml:tl:acc: tab:correspondence ## **Properties of Temporal Frames** aml:tl:acc: Given that our temporal models do not impose any conditions on the relation \prec , the only one of our familiar axioms that holds in all models is K, or its analogues K_{G} and K_{H} : $$G(p \to q) \to (Gp \to Gq)$$ (K_G) $$H(p \to q) \to (Hp \to Hq)$$ (K_H) However, if we want our models to impose stricter conditions on how time is represented, for instance by ensuring that \prec is a linear order, then we will end up with other validities in our models. Several of the properties from Table 1 might seem like desirable features for a model that is intended to represent time. However, it is worth noting that, even though we can impose whichever conditions we like on the \prec relation, not all conditions correspond to formulas that can be expressed in the language of temporal logic. For example, irreflexivity, or the idea that $\forall w \neg (w \prec w)$, does not have a corresponding formula in temporal logic. ## **Photo Credits** ## Bibliography