Part 1

Applied Modal Logic



This part contains experimental draft material on some applications of
modal logic, such as temporal and epistemic logics.
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Chapter 1

Temporal Logics

This chapter covers temporal logics.

1.1 Introduction

amb:tlint: ' Temporal logics deal with claims about things that will or have been the case.
*® Arthur Prior is credited as the originator of temporal logic, which he called
tense logic. Our treatment of temporal logic here will largely follow Prior’s
original modal treatment of introducing temporal operators into the basic
framework of propositional logic, which treats claims as generally lacking in

tense.

For example, in propositional logic, I might talk about a dog, Beezie, who
sometimes sits and sometimes doesn’t sit, as dogs are wont to do. It would
be contradictory in classical logic to claim that Beezie is sitting and also that
Beezie is not sitting. But obviously both can be true, just not at the same
time; adding temporal operators to the language can allow us to express that
claim relatively easily. The addition of temporal operators also allows us to
account for the validity of inferences like the one from “Beezie will get a treat
or a ball” to “Beezie will get a treat or Beezie will get a ball.”

However, a lot of philosophical issues arise with temporal logic that might
lead us to adopt one framework of temporal logic over another. For example,
a future contingent is a statement about the future that is neither necessary
nor impossible. If we say “Richard will go to the grocery store tomorrow,” we
are expressing a claim about something that has not yet happened, and whose
truth value is contestable. In fact, it is contestable whether that claim can even
be assigned a truth value in the first place. If we are strict determinists, then
perhaps we can be comfortable with the idea that this sentence is in fact true
or false, even before the event in question is supposed to take place—it just
may be that we do not know its truth value yet. In contrast, we might believe
in a genuinely open future, in which the truth values of future contingents are
undetermined.



As it turns out, a lot of these commitments about the structure and nature
of time are built in to our choices of models and frameworks of temporal logics.
For example, we might ask ourselves whether we should construct models in
which time is linear, branching or even circular. We might have to make
decisions about whether our temporal models will have beginning and end
points, and whether time is to be represented using discrete instants or as a
continuum.

1.2

Semantics for Temporal Logic

Definition 1.1. The basic language of temporal logic contains

1.

2.

5.
6.

The propositional constant for falsity L.
The propositional constant for truth T.
A denumerable set of propositional variables: pg, p1, P2, ...

The propositional connectives: = (negation), A (conjunction), V (disjunc-
tion), — (conditional), <> (biconditional).

Past operators P and H.

Future operators F and G.

Later on, we will discuss the potential addition of other kinds of modal
operators.

Definition 1.2. Formulas of the temporal language are inductively defined as
follows:

1.
2.

3.
4

ot

© % X

10.

1 is an atomic formula.
T is an atomic formula.

Every propositional variable p; is an (atomic) formula.

. If ¢ is a formula, then —¢ is a formula.

If ¢ and v are formulas, then (¢ A1) is a formula.
If ¢ and 4 are formulas, then (¢ V ) is a formula.
If ¢ and ¢ are formulas, then (¢ — v) is a formula.
If ¢ and v are formulas, then (¢ <> ®) is a formula.

If ¢ is a formula, then Py, Hp, Fp, Gy are all formulas.

Nothing else is a formula.
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The semantics of temporal logics are given in terms of relational models, as
with other kinds of intensional logics.

Definition 1.3. A model for temporal language is a triple M = (T, <, V),
where

1. T is a nonempty set, interpreted as points in time.
2. < is a binary relation on 7.

3. V is a function assigning to each propositional variable p a set V(p) of
points in time.

When ¢ < t' holds, we say that ¢ precedes t'. When t € V(p) we say p is true
at t.

For now, you will notice that we do not impose any conditions on our
precedence relation <. This means that at present, there are no restrictions on
the structure of our temporal models, so we could have models in which time
is linear, branching, circular, or has any structure whatsoever.

Just as with normal modal logic, every temporal model determines which
formulas count as true at which points in it. We use the same notation “model
M makes formula ¢ true at point ¢” for the basic notion of relational semantics.
The relation is defined inductively and is identical to the normal modal case
for all non-modal operators.

Definition 1.4. Truth of a formula ¢ at t in a 9, in symbols: M, ¢ IF ¢, is
defined inductively as follows:

1. o =1: Never M, ¢ L.
2. o =T: Always M, tI-T.

3. M tIFpifft e V(p)

4. o =—ap: DM EIF o iff MM, ¢ I o).

5. o= (W Ax): Mtk iff Mt I- and M, ¢ 1 x.

6. o= Vyx): Ml iff Mty or M ¢t Ik x (or both).

7. o= —=x): Mtk iff Mt or M, ¢ Ik x.

8. =W+ x): Mtk piff either both M, ¢ IF ¢ and M, ¢ I x or neither
M, t I nor M, t I x.

9. o=Py: Mt iff M, ¢’ - for some t' € T with t/ < ¢
10. @ =Hy: Mtk @ iff M, ¢ Ik ) for every t/ € T with t/ < ¢

11. p=Fy: M, tlI- @ iff M, I- ) for some t' € T with t < ¢/
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If <is ... H then ...1is true in IM:

transitive: FFp — Fp

YuVoVw((u < v Av < w) = u < w)

linear: (FPpV PFp) — (PpV pV Fp)
YuVo(w <vVw=vVv<w)

dense: Fp — FFp

Vuvo(w < v — Ju(w < uAu < v))

unbounded (past): Hp — Pp

YwIv(v < w)

unbounded (future): Gp — Fp

YwIv(w < v)

Table 1.1: Some temporal frame correspondence properties.

12. o =Gyp: Mt - @ iff M, ¢’ I for every t' € T with t <t/

Based on the semantics, you might be able to see that the operators P and H
are duals, as well as the operators F and G, such that we could define Hy as
=P-¢, and the same with G and F.

1.3 Properties of Temporal Frames

Given that our temporal models do not impose any conditions on the relation <,
the only one of our familiar axioms that holds in all models is K, or its analogues
K¢ and Ky:

G(p — q) — (Gp — Gq) (Ke)
H(p — ¢) — (Hp — Hq) (Kn)

However, if we want our models to impose stricter conditions on how time
is represented, for instance by ensuring that < is a linear order, then we will
end up with other validities in our models.

Several of the properties from Table 1.1 might seem like desirable features
for a model that is intended to represent time. However, it is worth noting that,
even though we can impose whichever conditions we like on the < relation, not
all conditions correspond to formulas that can be expressed in the language of
temporal logic. For example, irreflexivity, or the idea that Vw—(w < w), does
not have a corresponding formula in temporal logic.

1.4 Additional Operators for Temporal Logic

In addition to the unary operators for past and future, temporal logics also
sometimes include binary operators S and U, intended to symbolize “since”
and “until”. This means adding S and U into the language of temporal logic
and adding the following clause into the definition of a temporal formula:
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If ¢ and 1 are formulas, then (Spv) and (Uptp) are both formulas.

The semantics for these operators are then given as follows:
Definition 1.5. Truth of a formula ¢ at t in a 90:

1. o =SYx: Mtk iff M, ¢’ Ik for some ¢ € T with t' < ¢, and for all
switht' <s <t Mslky

2. p=Uyx: Mtk iff M, ¢’ IF 4 for some t' € T with ¢ < ¢/, and for
all s with t < s <t/, MM, s -y

The intuitive reading of Sty is “Since 1) was the case, x has been the case.”
And the intuitive reading of Uty is “Until ¢ will be the case, x will be the
case.”

1.5 Possible Histories

The relational models of temporal logic that we have been using are extremely
flexible, since we do not have to place any restrictions on the accessibility re-
lation. This means that temporal models can branch in the past and in the
future, but we might want to consider a more “modal” conception of branching,
in which we consider sequences of events as possible histories. This does not
necessarily require changing our language, though we might also add our “or-
dinary” modal operators OJ and ¢, and we could also consider adding epistemic
accessibility relations to represent changes in agents’ knowledge over time.

Definition 1.6. A possible histories model for the temporal language is a triple
M= (T,C,V), where

1. T is a nonempty set, interpreted as states in time.

2. C is a set of computational paths, or possible histories of a system. In
other words, C'is a set of sequences o of states si, sg, S3, ..., where every
s; €T.

3. V is a function assigning to each propositional variable p a set V(p) of
points in time.

To make things simpler, we will also generally assume that when a history is
in C, then so are all of its suffixes. For example, if s1, so, s3 is a sequence
in C, then so are sy, s3 and s3. Also, when two states s; and s; appear in a
sequence o, we say that s; <, s; when ¢ < j. When t € V(p) we say p is true
at t.

The one relevant change is that when we evaluate the truth of a formula at a
point in time ¢ in a model 9, we do so relative to a history o, in which ¢ appears
as a state. We do not need to change any of the semantics for propositional
variables or for truth-functional connectives, though. All of those are exactly
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as they were in Definition 1.4, since none of those will make reference to o.
However, we now redefine our future operator F and add our { operator with
respect to these histories.

Definition 1.7. Truth of a formula ¢ at t,o in M, in symbols: M, t, 0 Ik @:  ami:tlposs:

defn:phmodels

1. p=Fy: Mt,olk @ iff M, ¢/, 0 Ik 1) for some t' € T such that t <, t'.  ambtlposs:

defn:sub:phmodels-f

2. o= M t,olk @ iff M, ¢, 0" Ik 1) for some o’ € C in which  occurs. aml:t1:poss:

defn:sub:phmodels-diamond

Other temporal and modal operators can be defined similarly. However,
we can now represent claims that combine tense and modality. For example,
we might symbolize “p will not occur, but it might have occurred” using the
formula —=Fp A OFp. This would hold at a point and a history at which p does
not become true at a successor state, but there is an alternative history at
which p will become true.
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Chapter 2

Epistemic Logics

This chapter covers the metatheory of epistemic logics. It is structured
in a similar way to Aldo Antonelli’s notes on classical basic modal logic, but
has been rewritten by Audrey Yap in order to add material on bisimulation
and dynamic epistemic logics.

2.1 Introduction

amlelint: Just as modal logic deals with modal propositions and the entailment relations
*¢ among them, epistemic logic deals with epistemic propositions and the entail-
ment relations among them. Rather than interpreting the modal operators as
representing possibility and necessity, the unary connectives are interpreted in
epistemic or doxastic ways, to model knowledge and belief. For example, we

might want to express claims like the following:

1. Richard knows that Calgary is in Alberta.
2. Audrey thinks it is possible that a dog is on the couch.
3. Richard knows that Audrey knows that her class is on Tuesdays.

4. Everyone knows that a year has 12 months.

Contemporary epistemic logic is often traced to Jaako Hintikka’s Knowledge
and Belief, from 1962, and it was written at a time when possible worlds
semantics were becoming increasingly more used in logic. In fact, epistemic
logics use most of the same semantic tools as other modal logics, but will
interpret them differently. The main change is in what we take the accessibility
relation to represent. In epistemic logics, they represent some form of epistemic
possibility. We’ll see that the epistemic notion that we’re modelling will affect
the constraints that we want to place on the accessibility relation. And we’ll
also see what happens to correspondence theory when it is given an epistemic



interpretation. You’ll notice that the examples above mention two agents:
Richard and Audrey, and the relationship between the things that each one
knows. The epistemic logics we’ll consider will be multi-agent logics, in which
such things can be expressed. In contrast, a single-agent epistemic logic would
only talk about what one individual knows or believes.

2.2 The Language of Epistemic Logic

Definition 2.1. Let G be a set of agent-symbols. The basic language of multi-
agent epistemic logic contains

1. The propositional constant for falsity L.
2. The propositional constant for truth T.
3. A denumerable set of propositional variables: pg, p1, p2, ...

4. The propositional connectives: — (negation), A (conjunction), V (disjunc-
tion), — (conditional), <+ (biconditional).

5. The knowledge operator K, where a € G.

If we are only concerned with the knowledge of a single agent in our system,
we can drop the reference to the set GG, and individual agents. In that case, we
only have the basic operator K.

Definition 2.2. Formulas of the epistemic language are inductively defined as
follows:

1. L is an atomic formula.
2. T is an atomic formula.

Every propositional variable p; is an (atomic) formula.

- W

If ¢ is a formula, then -y is a formula.

o

If ¢ and ¢ are formulas, then (¢ A ) is a formula.
If ¢ and v are formulas, then (¢ V ¢) is a formula.
If ¢ and ¢ are formulas, then (¢ — v) is a formula.

If p and v are formulas, then (¢ <> ®) is a formula.

© »®» N

If ¢ is a formula and a € G, then K, is a formula.

10. Nothing else is a formula.

If a formula ¢ does not contain K,, we say it is modal-free.
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Definition 2.3. While the K operator is intended to symbolize individual
knowledge, E, often read as “everybody knows,” symbolizes group knowledge.
Where G/ C G, we define Eg/ as an abbreviation for

/\ Kb<p.

beG’

We can also define an even stronger sense of knowledge, namely common
knowledge among a group of agents G. When a piece of information is common
knowledge among a group of agents, it means that for every combination of
agents in that group, they all know that each other knows that each other
knows ...ad infinitum. This is significantly stronger than group knowledge,
and it is easy to come up with relational models in which a formula is group
knowledge, but not common knowledge. We will use Cgy to symbolize “it is
common knowledge among G that ¢.”

2.3 Relational Models

The basic semantic concept for epistemic logics is the same as that of ordinary
modal logics. Relational models still consist of a set of worlds, and an assign-
ment that determines which propositional variables count as “true” at which
worlds. And if we are only dealing with a single agent, we have a single accessi-
bility relation as usual. However, if we have a multi-agent epistemic logic, then
our single accessibility relation becomes a set of accessibility relations, one for
each a in our set of agent symbols G.

A relational model consists of a set of worlds, which are related by binary
accessibility relations—one for each agent—together with an assignment which
determines which propositional variables are true at which worlds.

Definition 2.4. A model for the multi-agent epistemic language is a triple
M= (W, R, V), where

1. W is a nonempty set of “worlds,”
2. For each a € G, R, is a binary accessibility relation on W, and

3. V is a function assigning to each propositional variable p a set V(p) of
possible worlds.

When R,ww’ holds, we say that w’ is accessible by a from w. When w € V(p)
we say p is true at w.

The mechanics are just like the mechanics for normal modal logic, just
with more accessibility relations added in. For a given agent, we will generally
interpret their accessibility relation as representing something about their in-
formational states. For example, we often treat R,ww’, as expressing that w’
is consistent with a’s information at w. Or to put it another way, at w, they
cannot tell the difference between world w and world w’.
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2.4 Truth at a World

Just as with normal modal logic, every epistemic model determines which for- amier:trw:
mulas count as true at which worlds in it. We use the same notation “model It **
makes formula ¢ true at world w” for the basic notion of relational semantics.

The relation is defined inductively and is identical to the normal modal case

for all non-modal operators.

Definition 2.5. Truth of a formula ¢ at w in a M, in symbols: M, w IF p, IS amlelitrw:
defined inductively as follows: defn:mmodels

1. p=1: Never M wl- L.

2. p=T: Always M wl- T.

3 Muwlkpiff we V(p)

4. o= —p: Mw Ik @ iff M, w W .

5. o= (W AYx): Mawlkpiff M w k1 and M, w Ik x.
6. o= Vyx): Muwlkeiff Mwlk or M w Ik x (or both).
7. o= —=x): Mwlk piff M w1 or Mw - x.
8. =W+ x): Muwlk @ iff either both M, w IF ¢ and M, w IF x or
neither 9, w I ¥ nor M, w I+ x.
9. p=Ku: Mwlk @ iff M, w' Ik 1) for all w’ € W with Ryww’ aml:el:trw:

defn:sub:mmodels-box

Here’s where we need to think about restrictions on our accessibility rela-
tions, though. After all, by clause (9), a formula K, is true at w whenever
there are no w’ with R,ww’. This is the same clause as in normal modal logic;
when a world has no successors, all [J-formulas are vacuously true there. This
seems extremely counterintuitive if we think about K as representing knowl-
edge. After all, we tend to think that there are no circumstances under which
an agent might know both ¢ and —p at the same time.

One solution is to ensure that our accessibility relation in epistemic logic will
always be reflexive. This roughly corresponds to the idea that the actual world
is consistent with an agent’s information. In fact, epistemic logics typically use
S5, but others might use weaker systems depending on what exactly they want
the K, relation to represent.

Problem 2.1. Consider which of the following hold in Figure 2.1:
1. M, wy Ik —q;
2. M, wy IF Ky—g;
3. M, wy IF Ky—g;
4. M, ws IF Kyq V Ky—g;
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fig:simple

Figure 2.1: A simple epistemic model.

5. M, we IF Ke(Kog V Kp—g);

6. m, w3 I E{a,b}ﬁq;

Now that we have given our basic definition of truth at a world, the other
semantic concepts from normal modal logic, such as modal validity and en-
tailment, simply carry over, applied to this new way of thinking about the
interpretation for the modal operators.

We are now also in a position to give truth conditions for the common
knowledge operator Cg. Recall from ?? that the transitive closure RY of a
relation R is defined as

Rt =[] R",
neN
where
R° = R and

R™™ = {(x,2) : Jy(R"xy A Ryz)}.

Then, where G is a group of agents, we define Rg = (Uye; Ry)T to be the
transitive closure of the union of all agents’ accessibility relations.

Definition 2.6. If G’ C G, we let M, w I Cgrp iff for every w’ such that
Rorww', M, w' - .
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IfR is ... H then ...1is true in IM:

K(p— q) = (Kp — Kq)
(Closure)
reflexive: YwRww Kp—p
(Veridicality)
transitive: Kp — KKp
VuVuoVw((Ruv A Rvw) — Ruw) (Positive Introspection)
euclidean: -Kp — K=Kp
YwVuvv((Rwu A Rwv) — Ruv) (Negative Introspection)

Table 2.1: Four epistemic principles.

2.5 Accessibility Relations and Epistemic Principles

Given what we already know about frame correspondence in normal modal
logics, we might want to see what the characteristic formulas look like given
epistemic interpretations. We have already said that epistemic logics are typi-
cally interpreted in S5. So let’s take a look at how various epistemic principles
are represented, and consider how they correspond to various frame conditions.

Recall from normal modal logic, that different modal formulas characterized
different properties of accessibility relations. This table picks out a few that
correspond to particular epistemic principles.

Veridicality, corresponding to the T axiom, is often treated as the most
uncontroversial of these principles, as it represents that claim that if a formula
is known, then it must be true. Closure, as well as Positive and Negative
Introspection are much more contested.

Closure, corresponding to the K axiom, represents the idea that an agent’s
knowledge is closed under implication. This might seem plausible to us in
some cases. For instance, I might know that if I am in Victoria, then I am
on Vancouver Island. Barring odd skeptical scenarios, I do know that I am in
Victoria, and this should also suggest that I know I am on Vancouver Island. So
in this case, the logical closure of my knowledge might seem relatively intuitive.
On the other hand, we do not always think through the consequences of our
knowledge, and so this might lead to less intuitive results in other cases.

Positive Introspection, sometimes known as the KK-principle, is sometimes
articulated as the statement that if I know something, then I know that I
know. It is the epistemic counterpart of the 4 axiom. Correspondingly, negative
introspection is articulated as the statement that if I don’t know something,
then I know that I don’t know it, which is the counterpart of the 5 axiom.
Both of these seem to admit of relatively ordinary counterexamples, in which
I am unsure whether or not I know something that I do in fact know.

2.6 Bisimulations
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One remaining question that we might have about the expressive power of our
epistemic language has to do with the relationship between models and the
formulas that hold in them. We have seen from our frame correspondence
results that when certain formulas are valid in a frame, they will also ensure
that those frames satisfy certain properties. But does our modal language, for
example, allow us to distinguish between a world at which there is a reflexive
arrow, and an infinite chain of worlds, each of which leads to the next? That
is, is there any formula A that might hold at only one of these two worlds?

Bisimulation is a relationship that we can define between relational models
to say that they have effectively the same structure. And as we will see, it
will capture a sense of equivalence between models that can be captured in our
epistemic language.

Definition 2.7 (Bisimulation). Let My = (W3, Ry, Vi) and My = (Wa, Ra, Vo)
be two relational models. And let R C W7 x W5 be a binary relation. We say
that R is a bisimulation when for every (wq,ws) € R, we have:

1. wy € Vi(p) iff wy € Va(p) for all propositional variables p.

2. For all agents a € A and worlds vy € Wy, if Ry, wiv; then there is some
vg € Wy such that Ry, wova, and (v1,vs) € R.

3. For all agents a € A and worlds v € Wa, if Ry wove then there is some
v1 € W1 such that Ry, wqv1, and (v1,vs) € R.

When there is a bisimulation between M; and M, that links worlds wy and
we, we can also write (M7, wy) € (M, ws), and call (M7, w;) and (Ms, wo)
bisimilar.

The different clauses in the bisimulation relation ensure different things.
Clause 1 ensures that bisimilar worlds will satisfy the same modal-free formulas,
since it ensures agreement on all propositional variables. The other two clauses,
sometimes referred to as “forth” and “back,” respectively, ensure that the
accessibility relations will have the same structure.

Theorem 2.8. If (M, w1) & (M, ws), then for every formula ¢, we have
that My, w1 - @ iff Mo, ws IF .

Even though the two models pictured in Figure 2.2 aren’t quite the same as
each other, there is a bisimulation linking worlds w; and v;. This bisimulation
will also link both ws and w3 to vy, with the idea being that there is nothing
expressible in our modal language that can really distinguish between them.
The situation would be different if wy and ws satisfied different propositional
variables, however.
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Figure 2.2: Two bisimilar models.

2.7 Public Announcement Logic

Dynamic epistemic logics allow us to represent the ways in which agents’ knowl-
edge changes over time, or as they gain new information. Many of these rep-
resent changes in knowlege using informational events or updates. The most
basic kind of update is a public announcement in which some formula is truth-
fully announced and all of the agents witness this taking place together. To do
this, we expand the language as follows

Definition 2.9. Let G be a set of agent-symbols. The basic language of multi-
agent epistemic logic with public announcements contains

1. The propositional constant for falsity L.
2. The propositional constant for truth T.
3. A denumerable set of propositional variables: pg, p1, p2, ...

4. The propositional connectives: — (negation), A (conjunction), V (disjunc-
tion), — (conditional)

5. The knowledge operator K, where a € G.

6. The public announcement operator [¢] where 9 is a formula.

The public announcement operator functions as a box operator, and our
inductive definition of the language is given accordingly:

Definition 2.10. Formulas of the epistemic language are inductively defined
as follows:

1. L is an atomic formula.

2. T is an atomic formula.
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10.

11.

Every propositional variable p; is an (atomic) formula.
If ¢ is a formula, then —¢p is a formula.

If ¢ and ¢ are formulas, then (¢ A ) is a formula.

If ¢ and 4 are formulas, then (¢ V ) is a formula.

If p and ¢ are formulas, then (¢ — v) is a formula.

If ¢ and ¢ are formulas, then (¢ <> ¥) is a formula.

If ¢ is a formula and a € G, then K, is a formula.

If ¢ and ¢ are formulas, then [p] is a formula.

Nothing else is a formula.

The intended reading of the formula [ply) is “After ¢ is truthfully an-
nounced, ¢ holds. It will sometimes also be useful to talk about common
knowledge in the context of public announcements, so the language may also
include the common knowledge operator Cg.

2.8

Semantics of Public Announcement Logic

amlel:psm: Relational models for public announcement logics are the same as they were in

sec

epistemic logics. However, the semantics for the public announcement operator

are something new.

amletpsm: Definition 2.11. Truth of a formula ¢ at w in a 9 = (W, R, V), in symbols:
defnimmodels 937 4y [ ¢, is defined inductively as follows:

1.
2.

3.

aml:el:psm: 9

defn:sub:mmodels-box

p=1: Never M wlF L.
p=T: Always M wl-T.

M, w - piff we V(p)

p = Mwlk piff M w kY.

p=WAx): Mwlk @ iff Mw Ik and M, w Ik x.
p=WVyx): Mwlkiff M, wlk Y or M, w - x (or both).
p=W—=x): Mwlkiff Mwl P or M w k- x.

p =W+ x): Mw - @ iff either both M, w IF ¢ and M, w I+ x or
neither 91, w I ¥ nor M, w I+ x.

p=Keo: M wl- @ iff M, w’ I for all w’ € W with R,ww’
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b announcement of p
-p, q ——— 3 W ) P, q

m Mm|p

Figure 2.3: Before and after the public announcement of p.

10. p=[Wlx: Mw k@ iff M, w - ¢ implies M | Y, w |- x
Where 9 | ¢ = (W', R', V') is defined as follows:

a) W ={ueW:IMulky}. So the worlds of M | ¢ are the worlds
in 9 at which v holds.

b) Rl = R, N (W' x W’). Each agent’s accessibility relation is simply
restricted to the worlds that remain in W”.

c) Vi(p) = {u € W :u € V(p)}. Similarly, the propositional val-
uations at worlds remain the same, representing the idea that in-
formational events will not change the truth value of propositional
variables.

What is distinctive, then, about public announcement logics, is that the
truth of a formula at 9t can sometimes only be decided by referring to a model
other than 97 itself.

Notice also that our semantics treats the announcement operator as a [J op-
erator, and so if a formula ¢ cannot be truthfully announced at a world, then
[¢]B will hold there trivially, just as all O formulas hold at endpoints.

We can see the public announcement of a formula as shrinking a model,
or restricting it to the worlds at which the formula was true. Figure 2.3 gives
an example of the effects of publicly announcing p. One notable thing about
that model is that agent b learns that p as a result of the announcement, while
agent a does not (since a already knew that p was true).

More formally, we have 0, wy |- =Kpp but M | p, w) Ik Kpp. This implies
that 9, w; Ik [p]Kpp. But we have some even stronger claims that we can
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make about the result of the announcement. In fact, it is the case that 9%, w; IF
[p]C{a’b}p. In other words, after p is announced, it becomes common knowledge.

We might wonder, though, whether this holds in the general case, and
whether a truthful announcement of ¢ will always result in ¢ becoming common
knowledge. It may be surprising that the answer is no. And in fact, it is
possible to truthfully announce formulas that will no longer be true once they
are announced. For example, consider the effects of announcing p A —Kp at w;
in Figure 2.3. In fact, 01| p and M | (p A —Kpp) are the same model. However,
as we have already noted, 9 | p,w] I+ Kpp. Therefore, M | (p A =Kpp), w} I+
—(pA—Kpp), so this is a formula that becomes false once it has been announced.
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